Нервная регуляция эритропоэза

Гематологические исследования

Нервная регуляция эритропоэза
sh: 1: –format=html: not found

Гемопоэз — процесс образования форменных элементов крови: эритроцитов (эритропоэз), лейкоцитов (лейкопоэз) и тромбоцитов (тромбоцитопоэз).

Он совершается в красном костном мозге, где образуются эритроциты, все зернистые лейкоциты, моноциты, тромбоциты, В-лимфоциты и предшественники Т-лимфоцитов. В тимусе проходит дифференцировка Т-лимфоцитов, в селезенке и лимфатических узлах — дифференцировка В-лимфоцитов и размножение Т-лимфоцитов.

Общей родоначальной клеткой всех клеток крови является полипотентная стволовая клетка крови, которая способна к дифференцировке и может дать начало роста любым форменным элементам крови и способна к длительному самоподдержанию.

Каждая стволовая кроветворная клетка при своем делении превращается в две дочерние клетки, одна из которых включается в процесс пролиферации, а вторая идет на продолжение класса полипотентных клеток. Дифференцировка стволовой кроветворной клетки происходит под влиянием гуморальных факторов.

В результате развития и дифференцировки разные клетки приобретают морфологические и функциональные особенности.

Гемоцитопоэз (гемопоэз, кроветворение) – совокупность процессов преобразования стволовых гемопоэтических клеток в разные типы зрелых клеток крови (эритроцитов — эритропоэз, лейкоцитов — лейкопоэз и тромбоцитов — тромбоцитопоэз), обеспечивающих их естественную убыль в организме.

Полипотентные стволовые гемопоэтические клетки находятся в красном костном мозге и способны к самообновлению. Они могут также циркулировать в крови вне органов кроветворения.

ПСГК костного мозга при обычной дифференциации дают начало всем типам зрелых клеток крови — эритроцитам, тромбоцитам, базофилам, эозинофилам, нейтрофилам, моноцитам, В- и Т-лимфоцитам.

Для поддержания клеточного состава крови на должном уровне в организме человека ежесуточно образуется в среднем 2,00 • 1011 эритроцитов, 0,45 • 1011 нейтрофилов, 0,01 • 1011 моноцитов, 1,75 • 1011 тромбоцитов.

[attention type=yellow]

У здоровых людей эти показатели достаточно стабильны, хотя в условиях повышенной потребности (адаптация к высокогорью, острая кровопотеря, инфекция) процессы созревания костномозговых предшественников ускоряются. Высокая пролиферативная активность стволовых гемопоэтических клеток перекрывается физиологической гибелью (апоптозом) их избыточного потомства (в костном мозге, селезенке или других органах), а в случае необходимости и их самих.

[/attention]

Подсчитано, что каждый день в организме человека теряется (2-5) • 1011 клеток крови, которые замешаются на равное количество новых.

Чтобы удовлетворить эту огромную постоянную потребность организма в новых клетках, гемоцитопоэз не прерывается в течение всей жизни.

В среднем у человека за 70 лет жизни (при массе тела 70 кг) образуется: эритроцитов — 460 кг, гранулоцитов и моноцитов — 5400 кг, тромбоцитов — 40 кг, лимфоцитов — 275 кг. Поэтому кроветворные ткани рассматриваются как одни из наиболее митотически активных.

Современные представления о гемоцитопоэзе базируются на теории стволовой клетки, основы которой были заложены русским гематологом А.А. Максимовым в начале XX в.

Согласно данной теории, все форменные элементы крови происходят из единой (первичной) полипотентной стволовой гемопоэтической (кроветворной) клетки (ПСГК).

Эти клетки способны к длительному самообновлению и в результате дифференциации могут дать начало любому ростку форменных элементов крови  и одновременно сохранять их жизнеспособность и свойства.

Стволовые клетки (СК) являются уникальными клетками, способными к самообновлению и дифференцировке не только в клетки крови, но и в клетки других тканей.

По происхождению и источнику образования и выделения СК разделяют на три группы: эмбриональные (СК эмбриона и тканей плода); региональные, или соматические (СК взрослого организма); индуцированные (СК, полученные в результате репрограммирования зрелых соматических клеток). По способности к дифференцировке выделяют тоти-, плюри-, мульти- и унипотентные СК.

Тотипотентная СК (зигота) воспроизводит все органы эмбриона и структуры, необходимые для его развития (плаценту и пуповину). Плюрипотентная СК может быть источником клеток, производных любого из трех зародышевых листков. Мульти (поли) потентная СК способна образовывать специализированные клетки нескольких типов (например клетки крови, клетки печени).

[attention type=red]

Унипотентная СК в обычных условиях дифференцируется в специализированные клетки определенного типа. Эмбриональные СК являются плюрипотентными, а региональные — полипотентными или унипотентными. Частота встречаемости ПСГК составляет в среднем 1:10 000 клеток в красном костном мозге и 1:100 000 клеток в периферической крови.

[/attention]

Плюрипотентные СК могут быть получены в результате репрограммирования соматических клеток различного типа: фибробластов, кератиноцитов, меланоцитов, лейкоцитов, β-клеток поджелудочной железы и другие, с участием факторов транскрипции генов или микроРНК.

Все СК обладают рядом общих свойств. Во-первых, они недифференцированы и не располагают структурными компонентами для выполнения специализированных функций. Во- вторых, они способны к пролиферации с образованием большого числа (десятков и сотен тысяч) клеток.

В-третьих, они способны к дифференцировке, т.е. процессу специализации и образованию зрелых клеток (например, эритроцитов, лейкоцитов и тромбоцитов).

В-четвертых, они способны к асимметричному делению, когда из каждой СК образуются две дочерние, одна из которых идентична родительской и остается стволовой (свойство самообновления СК), а другая дифференцируется в специализированные клетки.

Наконец, в-пятых, СК могут мигрировать в очаги повреждения и дифференцироваться в зрелые формы поврежденных клеток, способствуя регенерации тканей.

Различают два периода гемоцитопоэза: эмбриональный — у эмбриона и плода и постнатальный — с момента рождения и до конца жизни. Эмбриональное кроветворение начинается в желточном мешке, затем вне его в прекардиальной мезенхиме, с 6-недельного возраста оно перемещается в печень, а с 12 — 18-недельного возраста — в селезенку и красный костный мозг.

С 10-недельного возраста начинается образование Т-лимфоцитов в тимусе. С момента рождения главным органом гемоцитопоэза постепенно становится красный костный мозг. Очаги кроветворения имеются у взрослого человека в 206 костях скелета (грудине, ребрах, позвонках, эпифизах трубчатых костей и др.).

В красном костном мозге происходит самообновление ПСГК и образование из них миелоидной стволовой клетки, называемой также колониеобразующей единицей гранулоцитов, эритроцитов, моноцитов, мегакариоцитов (КОЕ-ГЭММ); лимфоидную стволовую клетку.

[attention type=green]

Мислоидная полиолигопотентная стволовая клетка (КОЕ-ГЭММ) может дифференцироваться: в монопотентные коммитированные клетки — предшественницы эритроцитов, называемые также бурстобразующей единицей (БОЕ-Э), мегакариоцитов (КОЕ- Мгкц); в полиолигопотентные коммитированные клетки гранулоцитов-моноцитов (КОЕ-ГМ), дифференцирующиеся в монопотентные предшественницы гранулоцитов (базофилы, нейтрофилы, эозинофилы) (КОЕ-Г), и предшественницы моноцитов (КОЕ-М). Лимфоидная стволовая клетка является предшественницей Т- и В- лимфоцитов.

[/attention]

В красном костном мозге из перечисленных колониеобразующих клеток через ряд промежуточных стадий образуются регикулоциты (предшественники эритроцитов), мегакариоциты (от которых «отшнуровываются» тромбоцит!,i), гранулоциты (нейтрофилы, эозинофилы, базофилы), моноциты и В-лимфоциты.

В тимусе, селезенке, лимфатических узлах и лимфоидной ткани, ассоциированной с кишечником (миндалины, аденоиды, пейеровы бляшки) происходит образование и дифференцирование Т-лимфоцитов и плазматических клеток из В-лимфоцитов.

В селезенке также идут процессы захвата и разрушения клеток крови (прежде всего эритроцитов и тромбоцитов) и их фрагментов.

В красном костном мозге человека гемоцитопоэз может происходить только в условиях нормального гемоцитопоэзиндуцирующего микроокружения (ГИМ). В формировании ГИМ принимают участие различные клеточные элементы, входящие в состав стромы и паренхимы костного мозга.

ГИМ формируют Т-лимфоциты, макрофаги, фибробласты, адипоциты, эндотелиоциты сосудов микроциркуляторного русла, компоненты экстрацеллюлярного матрикса и нервные волокна.

Элементы ГИМ осуществляют контроль за процессами кроветворения как с помощью продуцируемых ими цитокинов, факторов роста, так и благодаря непосредственным контактам с гемопоэтическими клетками.

Структуры ГИМ фиксируют стволовые клетки и другие клетки-предшественницы в определенных участках кроветворной ткани, передают им регуляторные сигналы, участвуют в их метаболическом обеспечении.

[attention type=yellow]

Гемоцитопоэз контролируется сложными механизмами, которые могут поддерживать его относительно постоянным, ускорять или тормозить, угнетая пролиферацию и дифферен- цировку клеток вплоть до инициирования апоптоза коммитированных клеток-предшественниц и даже отдельных ПСГК.

[/attention]

Пропустить Навигация Пропустить Пользователи на сайте

Пропустить Поиск по форумам Пропустить Последние объявления Пропустить Предстоящие события Пропустить Последние действия

Со времени Вашего последнего входа ничего не произошло

Page 3

Перейти к основному содержанию ВолгГМУ Скачать мобильное приложение

Источник: https://edu.volgmed.ru/mod/book/view.php?id=6900&chapterid=1989

Эритропоэз — как происходит образование эритроцитов крови?

Нервная регуляция эритропоэза

Синтез эритроцитов представляет собой один из самых важнейших и сложных процессов формирования клеток в организме. В норме каждую секунду создается два-три миллиона кровяных телец. Сам процесс образования эритроцитов называется эритропоэзом. Как же он происходит? Как выполняется нервная и гуморальная регуляция этого процесса?

Кроветворение

Можно выделить единую схему образования всех компонентов крови, в том числе и эритроцитов. На ней кратко и отчетливо видны стадии развития конкретной клетки. С помощью данной схемы можно отследить, на каком этапе произошла ошибка, и образование эритроцита прекратилось.

Специалист может активизировать созревание телец на этой стадии. Пользуясь схемой можно понять физиологию процесса кроветворения, верно поставить диагноз и вовремя предпринять меры по устранению патологии.

Физиология формирования клеток

Какова же физиология образования кровяных клеток? Эритропоэзом называют процесс,  в ходе которого формируются и созревают кровяные тельца – эритроциты. Это происходит в костном мозге человека. Первый элемент, от которого начинается происхождение эритроцитов, – полипотентная стволовая клетка.

Она способна дифференцироваться во все клетки без исключения и подвергается нескольким этапам деления, в результате чего появляются клетки-предшественники, от которых потом начинают развиваться эритроциты, лейкоциты, лимфоциты.

Все предшественники эритроцитов в костном мозге и зрелые клетки в кровотоке образуют замкнутую систему, которая называется эритроном. Клетки созревают под регуляцией гормона эритропоэтина и других необходимых компонентов. По времени этот процесс протекает не более двух недель.

Со стадии проэритробласта начинает вырабатываться гемоглобин. Ядро по мере развития эритроцита уменьшается, а потом исчезает вовсе. Уже на стадии ретикулоцита кровяные тельца выходят в кровь. В ней они за нескольких часов дозревают до полноценных эритроцитов.

Когда у человека происходят какие-либо патологические нарушения, которые сопровождаются анемией: острые кровопотери, отравления, инфекционные болезни, в крови могут образовываться недозрелые тельца, называемые нормобластами. Это говорит о том, что эритропоэз происходит в усиленном режиме. Для проверки физиологии этого нарушения проводятся лабораторные исследования.

Важно! Стоит отметить, что при образовании предшественников эритроцитов происходит разрушение части клеток еще в костном мозге. Этот процесс называют неэффективным эритропоэзом. Он заключается в разрушении и гибели кровяных телец, которые не обладают функциональной полноценностью. Роль неэффективного типа эритропоэза состоит в регуляции эритрона.

Компоненты, необходимые для эритропоэза

Чтобы все этапы эритропоэза проходили нормально, требуются микроэлементы, гормоны, витамины и прочие важные для этого процесса веществ. К ним относят:

  • Железо. Для образования эритроцитов организму требуется до 25 мг железа в сутки. Этот элемент поступает в костный мозг, когда происходит разрушение кровяных телец. Накапливается железо в печени и селезенке, немного в других органах. При дефиците данного компонента образуется железодефицитная анемия.
  • Медь. Ее роль тоже очень важна для формирования эритроцитов. Она усваивается непосредственно в костном мозге, участвует в выработке гемоглобина. Без меди эритроциты не могут развиваться полностью, они доходят только до стадии ретикулоцита. Если уровень меди снижен, то синтез крови в костном мозге останавливается, что вызывает анемию.
  • Витамин B12 и фолиевая кислота. Данные компоненты взаимодополняют друг друга, положительно влияя на эритропоэз.
  • Витамин В6 нужен, чтобы в гемоглобине сформировалось железо.
  • Витамин В2 Требуется для нормализации окислительных и восстановительных процессов в организме.
  • Гормоны, отвечающие за обмен белков и кальция и принимающие участие в созревании клеток.
  • Половые гормоны мужчин. Они немного активизируют процесс эритропоэза. А вот женские эстрогены, наоборот, тормозят его. Этим и объясняется тот факт, что количество эритроцитов у женщин меньше, чем у мужчин.

Важно! Главным элемент эритропоэза – гормон эритропоэтин, гуморальный регулятор созревания кровяных телец. Секреция и синтез данного компонента происходит в перитубулярных клетках почек. Некоторая часть эритропоэтинов формируется в печени, селезенке и костном мозге.

Как меняются клетки?

Проходя через все стадии эритропоэза, клетки подвергаются изменения морфологических характеристик. Происходит следующее:

  • Меняются параметры клеток в сторону уменьшения.
  • Увеличивается число цитоплазматического матрикса.
  • Изменяется оттенок телец от голубого до красного. Это происходит потому, что снижается концентрация РНК и ДНК, а уровень гемоглобина, наоборот, повышается.
  • Становятся меньше параметры ядра, в конечном итоге оно вообще исчезает.
  • Содержащий в эритроцитах хроматин приобретает большую плотность.

Гуморальная регуляция

Регуляция образования крови еще не полностью исследована на данный момент. Чтобы эритропоэз протекал непрерывно, все потребности различных клеток удовлетворялись в полной мере, обеспечивалось постоянство и баланс гомеостаза, требуется работа сложного регуляторного механизма.

Главный гуморальный регулятор, как уже говорилось, – гормон эритропоэтин. Он образуется в различных внутренних органах человека, но больше всего в почках, сосудах и печени. Концентрация этого компонента всегда одинаковая. Но возникают ситуации, когда уровень гормона нарушается. Это происходит при обильном кровотечении, подъеме в горы, ишемической болезни почек.

Вместе с гуморальным регулятором эритропоэтином в синтезе эритроцитов принимают участие ингибиторы. Они представляют собой разнообразные вещества, некоторые из которых относятся к токсинам, выделяющимся при патологических нарушениях.

[attention type=red]

На первых стадиях дифференцировки регуляция происходит благодаря факторам микроокружения клеток. Затем только в игру вступают эритропоэтин и ингибиторы.

[/attention]

Когда организму требуется в краткий срок сформировать множество новых кровяных телец, начинает действовать стрессовый механизм. Это значит, что эритропоэтин становится намного активнее ингибиторов эритропоэза, в результате чего нарушается регуляция эритропоэза. Возможен и обратный эффект, когда ингибиторы сильнее воздействуют на созревание клеток, приводя к торможению этого процесса.

Нервная регуляция

Конечно же, воздействие гуморальных факторов на эритропоэз намного сильнее и значимее, чем влияние нервной системы, но все же и последнее имеется.

Когда возбуждается симпатический отдел вегетативной нервной системы, повышается количество эритроцитов в крови.

Такое нарушение имеет перераспределительный характер и во многом зависит от опорожнения селезенки, в которой скапливаются кровяные тельца.

В это же время адреналин и норадреналин способствует стимуляции аденилатциклазной системы. В итоге усиленно выделяется эритропоэтин.

В гипоталамусе человека присутствуют особые центры, благодаря которым происходит нервная регуляция эритропоэза.

Если на него воздействует какой-то раздражитель, то он начинает провоцировать образование клеток, что приводит к повышению уровня эритроцитов в крови.

Выработка гемоглобина

Гемоглобин содержит в себе железо, дефицит которого может вызвать развитие анемии. Выработка этого вещества и эритропоэз связаны друг с другом. Когда уровень гемоглобина достигает определенного порога, образование эритроцитов останавливается.

Синтез гемоглобина начинается в клетках-предшественниках кровяных телец. Это происходит еще при внутриутробном развитии плода. После появления ребенка на свет у него появляется гемоглобин F, а потом гемоглобин А. У взрослых может отмечаться возникновение гемоглобина F, например, при кровопотере.

В составе гемоглобина содержатся два типа цепей глобина. Они располагаются вокруг гема, который содержит в себе железо. Исходя из того, как изменяются последовательности остатков аминокислот в цепях, модифицируются и свойства гемоглобина. К примеру, он может под воздействием некоторых условий преобразовываться в кристаллы и терять способность к растворению.

[attention type=green]

Образование эритроцитов и прочих компонентов крови – это довольно сложный и важный процесс, который проходит в несколько этапов. Любое нарушение в созревании клеток может привести к отклонениям в работе организма, поэтому необходимо своевременно выявлять факторы, способные вызвать его.

[/attention]
Загрузка…

Источник: https://dlja-pohudenija.ru/serdcze/fiziologiya-eritropoeza-sintez-gemoglobina-kak-proishodit-obrazovanie-eritroczitov

Эритроцитопоэз (эритропоэз)

Нервная регуляция эритропоэза

Эритроцитопоэз (эритропоэз)— это процесс образования и созревания красных кровяных клеток — эритроцитов. Гемопоэтическая ткань не имеет специфической формы, поэтому развитие и дифференцировка различных кровяных клеток показаны с использованием искусственно изолированных тканевых кубиков. На рисунке 1 все клеточные преобразования показаны стрелками.

Рис.1. Схема эритроцитопоэза (эритропоэза)

Из колониеобразующей единицы эритроцитопоэза (КОЕ-Э) — вероятно, маленькой, лимфоцитоподобной клетки без специальных морфологических характеристик путем ее деления возникает очень большая базофильная клетка — проэритробласт (Пэб), первый визуально определяемый элемент эритроцитарного ряда. Два последующих деления проэритробласта дают начало базофильным эритробластам (БЭ). Ядра этих клеток меньше, чем у проэритробластов, и содержат значительно больше гетерохроматина. У этих клеток базофилия слабее, чем у их материнских клеток.

Базофильные эритробласты подвергаются двум митотическим делениям, образуя полихроматофильные эритробласты (ПЭ). Ядра этих клеток содержат очень конденсированный хроматин, тогда как цитоплазма окрашена в фиолетово-голубой или слегка зеленовато-голубой цвет.

Митозы полихроматофильных эритробластов дают начало ортохроматическим эозинофильным эритробластам (ОЭ), или нормобластам, которые часто группируются вокруг ретикулярных клеток (РК), образуя эритробластические островки (ЭО). Цитоплазма ортохроматических эритробластов окрашивается в оранжево-красный цвет. Пикнотическое ядро (Я) затем выделяется из тела клетки.

В результате экструзии (от позднелат. extrusio — выталкивание) ядра образуются ретикулоциты (Р), которые затем проходят сквозь отверстия в эндотелиальных клетках (ЭК) или между ними в просвет кровеносных синусов (С), где они в течение 24 ч. преобразуются в зрелые эритроциты (Э).

Часть ретикулоцитов созревает до зрелых эритроцитов вне костного мозга, находясь уже в кровеносном русле.

В правой части тканевого куба можно видеть последний митоз (М) полихроматофильного эритробласта и ортохроматофильный эритробласт (ОЭ) с начавшейся экструзией ядра.

На срезанных поверхностях куба видны часть миелобласта (Миб), эозинофильный гранулоцит (ЭГр) и нейтрофильный гранулоцит (HГр), а также ретикулярные клетки (РК). Процессы деления и преобразования КОЕ-Э до зрелых эритроцитов занимают около 3—7 дней.

КОЕ-Э очень чувствительны к гликопротеину, эритропоэтину, колониестимулирующему фактору, который инициирует эритроцитопоэз. Эритропоэтин синтезируется в почках.

ЭРИТРОБЛАСТЫ И ЭРИТРОБЛАСТИЧЕСКИЕ ОСТРОВКИ



Рис.2.

Эритробласты и эритробластический островок

Во время эритроцитопоэза (эритропоэза) возникает специальная межклеточная кооперация в костном мозге между ретикулярной клеткой (РК), развивающимися ортохроматическими эритробластами (ОЭ) и ретикулоцитами (Р), дающая начало эритробластическим островкам.

Ретикулярная клетка очень тесно окружена кольцом эритробластов на различных стадиях развития, так, что она почти полностью охвачена их тонкими уплощенными отростками (О). Эти отростки появляются между эритробластами и ретикулоцитами как непостоянные пучки микроворсинок (Мв).

Ретикулярная клетка имеет центральное, неправильной формы ядро (Я) и хорошо развитые органеллы. В связи с ее фагоцитарной активностью в цитоплазме часто находится множество лизосом (Ли), резидуальных телец (РТ) и фаголизосом (Фл).

При трансмиссионной электронной микроскопии в ортохроматических эритробластах обнаруживается весьма осмиофильная (легко окрашивающаяся с помощью тетраоксида осмия) цитоплазма из-за большого содержания в ней гемоглобина.

[attention type=yellow]

Эти клетки не содержат органелл, но имеют круглое сморщенное ядро с глыбками гетерохроматина, располагающимися в виде спиц колеса.

[/attention]

При экструзии ядро эритробласта может быть непосредственно захвачено ретикулярной клеткой, которая образует в этом случае объемистую фаголизосому.

РЕГУЛЯЦИЯ ЭРИТРОПОЭЗА


Ретикулярные клетки, как и макрофаги, контролируют конечные стадии эритроцитопоэза двумя основными путями:

1. Путем фагоцитоза, который позволяет им устранять клеточные оболочки, прекращать метаболизм ядер эритробластов (хроматин утилизируется в нуклеотидном метаболизме) и разрушать зрелые эритроциты и эритробласты с пороками развития.

2.

Путем переноса ферритина — железопротеинового комплекса, образовавшегося после разрушения зрелых эритроцитов и эритробластов с пороками развития, к молодым ортохроматическим эритробластам посредством рофеоцитоза, хотя юные эритробласты также способны извлекать железо из сывороточного транспортного протеина (трансферрина). Кроме того, поскольку макрофаги продуцируют более 100 различных видов молекул, их роль в контроле всего процесса гемоцитопоэза, видимо, более важная, чем предполагалось.

Источник: https://tardokanatomy.ru/content/eritrotsitopoez-eritropoez

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: