Нервная регуляция сердца физиология

Внесердечная регуляция деятельности сердца. Аритмии сердца

Нервная регуляция сердца физиология

Хотя сердце генерирует собственные электрические импульсы (внутрисердечная регуляция), их влияние и хронометраж могут измениться. В нормальных условиях это осуществляется в основном благодаря трем внесердечным системам:

1) парасимпатической нервной системе;2) симпатической нервной системе;3) эндокринной системе (гормоны).

Парасимпатическая система — часть вегетативной нервной системы, воздействует на сердце через блуждающий (Х-черепной) нерв. В покое доминирует влияние парасимпатической системы в виде вагусного тонуса.

Блуждающий нерв оказывает на сердце подавляющее воздействие, замедляя проводимость импульса и, следовательно,
снижая частоту сердцебиений.

Максимальная вагусная стимуляция может снизить частоту сердечных сокращений на 20 — 30 ударов-мин”1, вплоть до его остановки в диастоле. Кроме того, блуждающий нерв уменьшает силу сокращения сердца.

Симпатическая нервная система — другая часть вегетативной нервной системы, оказывающая противоположное действие. Симпатическая стимуляция увеличивает скорость проводимости импульса и, следовательно, частоту сердечных сокращений.

Максимальная симпатическая стимуляция может увеличить ЧСС до 250 уд.-мин1. Кроме того, возрастает и сила сокращений. Симпатическая система доминирует во время физических или эмоциональных стрессов, когда значительно повышаются обменные потребности организма.

После устранения стресса вновь доминирует парасимпатическая система.

[attention type=yellow]

Эндокринная система оказывает воздействие посредством гормонов, выделяемых мозговым веществом надпочечников — норадреналина и адреналина. Эти гормоны известны также как катехоламины. Подобно симпатической нервной системе, они стимулируют сердце, повышая ЧСС. Вообще выделение этих гормонов “запускается” симпатической стимуляцией в периоды стресса.

[/attention]

Нормальная ЧСС в покое колеблется в пределах 60 — 85 ударов-мин. И менее. Продолжительные тренировки на развитие выносливости от нескольких месяцев до нескольких лет могут снизить ЧСС в покое до 35 ударов-мин1 и менее.

У бегуна мирового класса на длинные дистанции мы наблюдали ЧСС 28 ударов-мин 1.

Предполагают, что пониженная ЧСС — результат усиления парасимпатической стимуляции (вагусный тонус), в то время как ослабление симпатической активности, очевидно, играет в этом более скромную роль.{banner_st-d-1}

Аритмии сердца

Время от времени возникающие нарушения нормальной деятельности сердца могут привести к расстройству ритма сердечных сокращений — аритмии. Степень серьезности таких расстройств неодинакова. Брадикардия и тахикардия — два типа изменения ритма сердца. Брадикардия — замедление ЧСС. При этом расстройстве ЧСС в покое не превышает 60 ударов-мин”1.

Тахикардия — “быстрое сердце”. При тахикардии ЧСС в покое превышает 100 ударов-мин”1. Как правило, при этих расстройствах изменяется и синусовый ритм. Сердце может функционировать нормально, аномален лишь его ритм. Однако это может повлиять на кровообращение. Симптомы обоих видов аритмии включают чувство усталости, головокружение, потерю сознания.

Существуют и другие виды аритмии. Например, относительно часто встречаются преждевременные сокращения желудочков, которые вызывают ощущение выпадения или дополнительного сокращения сердца. Они являются результатом импульсов, возникающих за пределами СА-узла.

Трепетание предсердий, при котором предсердия сокращаются с частотой 200 — 400 ударов-мин”1, а также мерцание предсердий, когда они сокращаются быстро и некоординированно — более серьезные виды аритмии, при которых предсердия перекачивают совсем немного (или вообще не перекачивают) крови. Желудочковая пароксизмальная тахикардия, т.е.

три и более последовательных преждевременных сокращений желудочков, представляет собой весьма серьезную форму аритмии, которая может привести к мерцанию желудочков, при котором сокращение ткани желудочков не координируется. Когда это случается, сердце не может перекачивать кровь.

Мерцание желудочков — причина большинства смертельных исходов у страдающих заболеваниями сердца. Чтобы больной остался в живых, необходимо в течение нескольких минут вызвать шок сердца с помощью дефибриллятора, чтобы вернуть ему нормальный синусовый ритм.

Восстановление сердечной деятельности и дыхания восстанавливает нормальный ритм сердца и может поддержать жизнедеятельность в течение нескольких часов, однако больше шансов выжить дает неотложная терапия, включая дефибрилляцию.

[attention type=red]

Интересно, что у спортсменов высокого класса, занимающихся видами спорта, требующими проявления выносливости, очень часто наблюдается низкая ЧСС в покое — благоприятная адаптация вследствие тренировочных нагрузок.

[/attention]

Во время мышечной деятельности ЧСС, естественно, увеличивается, чтобы обеспечить повышенные потребности организма, обусловленные напряжением сил.

Эти два вида адаптации не следует путать с брадикардией или тахикардией — аномальными изменениями ЧСС в покое, которые обычно свидетельствуют о патологических нарушениях.

Источник: https://sport-51.ru/article/physiology/10200-vneserdechnaja-reguljacija-dejatelnosti-serdca-aritmii-serdca.html

Регуляция деятельности сердца

Нервная регуляция сердца физиология

В момент сокращения сердца в пятом межреберье слева, на 1 см. кнутри от среднеключичной линии ощущается верхушечный толчок. При сокращении желудочков форма сердца приближается к шару, а в момент диастолы – в виде эллипсоида. Сокращение сердца сопровождается уменьшением продольного

размера и увеличением поперечного.

Уплотненный миокард левого желудочка касается внутренней поверхности грудной стенки, верхушка сердца в момент систолы приподнимается и ударяется о переднюю стенку грудной клетки. Все это вызывает появление верхушечного толчка. В патологии (при гипертрофии сердца, дилятации его) верхушечный толчок смещается влево и служит первым признаком

увеличения размеров сердца.

Увеличение размеров сердца может быть обусловлено либо чрезмерной и частой физической нагрузкой, например у спортсменов, либо патологическими изменениями в самом сердце и в системе кровообращения (пороки сердца, кардиодистрофия, гипертоническая болезнь, постинфарктное

увеличение размеров сердца и т.д.).

Расположение верхушечного толчка можно определить либо визуально, либо пальпаторно. Верхушечный толчок можно также регистрировать. Метод графической регистрации верхушечного толчка называется апексокардиографией. На формирование кривой верхушечного толчка оказывают существенное влияние такие факторы, как изменение внутрисердечного объема в процессе выброса и наполнения,

сократимость миокарда, ударный объем.

Внутриклеточные механизмы регуляции

Электронно-микроскопические исследования показали, что миокард, в структурном отношении, не является синцитием (а функционирует только как функциональный синцитий), а состоит из отдельных клеток — кардиомиоцитов, которые между собой соединены вставочными дисками. Передача возбуждения от кардиомиоцита к кардиомиоциту осуществляется за счет специальных плотных (тесных) контактов, которые

получили название « нексусы».

Между кардиомиоцитами имеются вставочные диски, которые механически связывают между собой миокардиоциты (как бы в торец в торец). Благодаря такому строению возбуждение одного участка миокарда сопровождается быстрым распространением и возбуждением другого участка, т.е. миокард в результате работает как функциональный синцитий и по закону

«все или ничего».

Внутриклеточные механизмы регуляции обеспечивают изменение интенсивности деятельности сердца в зависимости от количества притекающей крови (венозного возврата) или величины давления (сопротивления) в аорте или в легочной артерии. Эти механизмы регуляции силы сокращения сердца получили название «миогенная

ауторегуляция».

Гетерометрический тип ауторегуляции силы сокращения сердца (или закон Франка-Старлинга) заключается в том, что увеличение силы сокращения сердца зависит от величины венозного возврата. Чем больше венозный возврат, тем в большей степени происходит диастола (увеличение исходной длины сердечной мышцы), которая сопровождается более мощной систолой, т.к. надо перегнать

больше крови.

В клинической практике увеличение венозного притока обозначают как «преднагрузка».

При необходимости уменьшения нагрузки на сердце, а это может быть связано с наличием какой-либо патологии, предпринимаются меры, направленные на уменьшение венозного возврата.

Он может быть снижен в результате уменьшения объема циркулирующей крови путем, например, усиления диуреза, ограничения потребления жидкости и поваренной соли

и т.д.

Под гомеометрической регуляцией принято понимать изменения силы сокращения сердца без предварительного увеличения длины волокон миокарда. Сюда следует отнести ритмозависимые изменения силы сокращений. При увеличении частоты сердечных сокращений можно наблюдать увеличение амплитуды, т.е. силы каждого последующего сокращения («лестница»

Боудича).

Такие хроно-инотропные взаимоотношения наблюдаются только в определенном диапазоне увеличения частоты.

Чрезмерно большая частота сокращений сердца не вызывает увеличения силы сокращения, а может привести к ослаблению сократительной способности сердца.

Гомеометрический принцип миогенной ауторегуляции силы сокращения сердца четко проявляется при повышении сопротивления выбросу крови из левого

желудочка в аорту, т.е. при гипертензии.

[attention type=green]

Для обеспечения необходимого систолического выброса происходит повышение мощности сокращения сердца (это явление получило название феномен Анрепа).

[/attention]

В начальном периоде резкое повышение сопротивления в аорте сопровождается увеличением конечно- диастолического объема желудочков и поэтому в этот период увеличение силы сокращения происходит по гетерометрическому принципу, а на втором этапе конечно-диастолический объем стабилизируется и возрастание силы сокращений сердца происходит по

гомеометрическим механизмам.

Увеличение сопротивления выбросу крови в аорту, т.е. повышение давления в ней называют «постнагрузкой». Для уменьшения нагрузки на сердце необходимо также предпринять меры, уменьшающие сопротивление и снижающие величину артериального давления (например, за счет вазодилятации или уменьшения вазоконстрикторных

влияний).

Регуляция межклеточных взаимоотношений. Установлено, что вставочные диски имеют различную структуру. Одни участки вставочных дисков выполняют чисто механическую функцию, другие участвуют в транспорте веществ через мембрану кардиомиоцитов, третьи — нексусы, или тесные контакты,

проводят возбуждение с клетки на клетку.

При нарушении межклеточных взаимоотношений могут возникнуть сердечные аритмии, обусловленные возникновением асинхронного сокращения клеток миокарда.

К межклеточным взаимоотношениям также следует отнести взаимоотношеия кардиомиоцитов с соединительнотканными клетками миокарда.

Эти клетки являются не только механической опорной структурой, но они поставляют для сократительных клеток миокарда высокомолекулярные соединения. Последние необходимы для поддержания структуры

и функции сократительных клеток.

Внутрисердечные регуляторные механизмы

К этой форме регуляции относятся: внутриклеточные механизмы регуляции, регуляция межклеточных взаимодействий и нервные

механизмы — внутрисердечные рефлексы.

Этот метод отражает перемещение центра тяжести грудной клетки и ударных компонентов работы сердца. В настоящее время также используется крайне редко, поэтому на характеристике этого метода можно и не

останавливаться.

Этот метод основан на регистрации и анализе низкочастотных колебаний стенки грудной клетки, вызванных работой сердца. Объем информации при ККГ включает сведения о моментах раскрытия и закрытия клапанов, о направлении, величине перемещения, скорости и ускорении движения сердца

в исследуемой зоне

Этот метод в настоящее время почти не применяется, т.к. есть другие более информативные и менее громоздкие методы исследования

функции сердца (например, эхокардиография).

Нервные центры сердечных рефлексов

Понятие нервного центра мы традиционно рассматриваем в двух вариантах: узком и широком. В узком смысле под сердечным центром мы понимаем совокупность нейронов продолговатого мозга, обеспечи-вающих реализацию сердечных рефлексов. Нервный центр, продолго-ватого мозга разнороден. Во-первых, в его состав включают эффекторные ядра блуждающего

нерва, который иннервирует сердце.

Во-вторых, в его состав включают нейроны располагающиеся среди клеток прессорного отдела сосудо-двигательного центра продолговатого мозга. Они адресуют свои аксоны к верхним сегментам спинного мозга, где в боковых рогах расположены нейроны симпатического отдела автономной

нервной системы, иннервирующие сердце.

При широком толковании понятия «сердечный нервный центр», в его состав включают нервные центры гипоталамичсекой области (задние ядра представляют симпатический отдел, а передние ядра – парасимпатический отдел автономной нервной системы),

нервные центры коры больших полушарий.

План лекции

  1. Классификация механизмов регуляции деятельности

    сердца;

  2. Нервно-рефлекторная
    регуляция деятельности сердца:

– рецепторы и рефлексогенные зоны сердечных

рефлексов;

– афферентные
звенья сердечных рефлексов;

– нервные
центры сердечных рефлексов;

  • эфферентные звенья сердечных рефлексов, роль симпатических

и парасимпатических
нервов в регуляции деятельности сердца.

  1. Гуморальная
    регуляция деятельности сердца;

  2. Внутрисердечные механизмы регуляции деятельности

    сердца:

  • миогенные механизмы регуляции деятельности сердца;
  • нервно-проводниковые механизмы регуляции деятельностисердца.

Это метод визуализации полостей и внутрисердечных структур сердца при помощи ультразвуковых волн, а также метод оценки функционального состояния сердца. Существует несколько принципов работы ультразвуковых приборов. В кардиологии используют в

основном следующие:

1. Эхокардиографические приборы, дающие одномерное изображение сердца с разверткой движения его структур во времени — М-метод (motion –

движение)

2. Двухмерное изображение сердца, получаемое при линейном перемещении (сканировании) ультразвукового датчика по поверхности грудной клетки в пределах ультразвукого

«окна» — В-сканирование.

3. Ультразвуковое секторальное сканирование — двухмерное изображение сердца в реальном масштабе времени. Угол секторального сканирования

— от 30 до 90º.

Все ультразвуковые приборы независимо от модели устроены по единому принципу. Ультразвуковой датчик (трансдюссер) — устройство, одновременно посылающее ультразвуковой сигнал и воспринимающий отраженные импульсы. Вся информация подвергается компьютерной обработке и выдается в виде цифровых данных, а также изображение с экрана регистрируется поляроидной

камерой фотоаппаратом.

[attention type=yellow]

В настоящее время используют также аппаратуру, работающую на принципе эффекта Доплера. Исследование проводят в положении пациента на спине или на левом боку. Исследование начинают с опознавания какого- либо участка сердца (например, аорты или створки митрального клапана). Используют обычно 4 стандартных позиции

[/attention]

датчика.

Используя разные позиции датчика, можно последовательно исследовать разные участки сердца. Когда исследуется полость левого желудочка, то оценивают размеры и объемы в разные периоды сердечного цикла, толщину и массу миокарда и показателей, характеризующих его сократительную функцию. Как правило, определяют конечно-диастолический,

конечно-систолический размер (объем).

Конечно-диастолический объем (КДО) показывает объем левого желудочка в момент максимальной диастолы. В норме у взрослого человека этот объем составляет

около 120-130 мл.

Конечно-систолический объем (КСО) показывает объем крови, оставшийся в левом желудочке после систолы, т.е. после изгнания (выброса) крови в аорту. Эта величина в нашем примере может составить

около 50-60 мл.

Разница между конечно-диастолическим и конечно-систолическим объемами (130-60 = 70 мл) составляет ударный или систолический объем крови (УО или СО).

Он в норме составляет около 70 мл с индивидуальными колебаниями в зависимости от степени тренированности организма, пола, возраста, функционального состояния сердца.

При наличии патологических изменений в сердце величина его, как правило, уменьшается, а у спортсменов

систолический объем выше 70 мл.

Для расчета объема полости левого желудочка предложены специальные формулы. Важным показателем функционального состояния сердца является фракция изгнания или фракция

выброса.

Фракция выброса—это отношение ударного объема к конечно-диастолическому объему (КДО). Величина эта определяется по формуле ФВ = УО/КДО

· (100%). У здоровых лиц ФВ превышает 50%.

Для определения минутного объем сердца величину ударного объема умножают на частоту сердечных сокращений. Эхокардиография позволяет оценить также функциональные параметры остальных отделов сердца, состояние клапанного аппарата, толщину стенок различных участков миокарда, сократительную

активность его и т.д.

Источник: https://MoeDavlenie.net.ru/regulyatsiya-serdtsa-fiziologiya/

Регуляция кровообращения — Знаешь как

Нервная регуляция сердца физиология

Иннервация сердца и сосудов. Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими (рис. 70). Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла.

Блуждающие нервы тормозят сердечную деятельность. Если начать раздражать блуждающий нерв электрическим током, то происходит замедление и даже остановка сердечных сокращений (рис. 71). После прекращения раздражения блуждающего нерва работа сердца восстанавливается.

Рис. 70. Схема иннервации сердца

Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм

сердечной деятельности и усиливается каждое сердечное сокращение (рис. 72). При этом возрастает систолический, или ударный, объем крови.

В изучении особенностей влияния центробежных нервов на сердце важную роль сыграли исследования И. П. Павлова.

Если собака находится в спокойном состоянии, то ее сердце сокращается от 50 до 90 раз в минуту. Если перерезать все нервные волокна, направляющиеся к сердцу, то сердце сокращается теперь 120—140 раз в минуту.

Если перерезать только блуждающие нервы сердца, то ритм сердца возрастет до 200—250 раз в минуту. Это связано с влиянием сохранившихся симпатических нервов.

[attention type=red]

Сердце человека и многих животных находится под постоянным сдерживающим влиянием блуждающих нервов.

[/attention]

Рис. 71. Влияние раздражения блуждающего нерва на сердце лягушки.

Блуждающий и симпатический нервы сердца обычно действуют согласованно: если повышается возбудимость центра блуждающего нерва, то соответственно понижается возбудимость центра симпатического нерва.

Во время сна, в состоянии физического покоя организма сердце замедляет свой ритм за счет усиления влияния блуждающего нерва и некоторого снижения влияния симпатического нерва.

 Во время физической работы ритм сердца учащается, сокращения становятся сильнее. При этом происходит усиление влияния симпатического нерва и снижение влияния блуждающего нерва на сердце.

Таким путем обеспечивается экономный режим работы сердечной мышцы.

Рис. 72. Влияние раздражения симпатического нерва на сердце лягушки.

Изменение просвета кровеносных сосудов происходит под влиянием импульсов, передающихся на стенки сосудов по сосудосуживающим нервам. Импульсы, поступающие по этим нервам, возникают в продолговатом мозге в сосудодвигательном центре. Открытие и описание деятельности этого центра принадлежит Ф. В. Овсянникову.

Рефлекторные влияния на деятельность сердца и сосудов

Ритм и сила сердечных сокращений меняются в зависимости от эмоционального состояния человека, выполняемой им работы. Состояние человека влияет и на кровеносные сосуды, меняя их просвет.

При страхе, гневе, физическом напряжении из-за изменения просвета кровеносных сосудов человек бледнеет или краснеет.

Работа сердца и просвет кровеносных сосудов связаны с потребностями организма, его органов и тканей в обеспечении их кислородом и питательными веществами.

Приспособление деятельности сердечно-сосудистой системы к тем условиям, в которых находится организм, осуществляется нервным и гуморальным регуляторными механизмами, которые обычно функционируют взаимосвязанно.

[attention type=green]

Нервные влияния, регулирующие деятельность сердца и кровеносных сосудов, передаются к ним из центральной нервной системы по центробежным нервам. Раздражением любых чувствительных окончаний можно рефлекторно вызвать урежение или учащение сокращений сердца.

[/attention]

Тепло, холод, укол и другие раздражения вызывают в окончаниях центростремительных нервов возбуждение, которое передается в центральную нервную систему и оттуда по блуждающему или симпатическому нерву достигает сердца.

Рис. 73. Схема строения надпочечников:

1 — корковый слой, где вырабатываются гормоны гидрокортизон, кортикостерон, альдостерон и др.;

2— внутренний слой — мозговое вещество, в котором образуются

адреналин и норадреналин

Центробежные нервы сердца получают импульсы не только из продолговатого и спинного мозга, но и от вышележащих отделов центральной нервной системы, в том числе и от коры больших полушарий головного мозга.

Известно, что боль вызывает учащение сердечных сокращений. Если ребенку при лечении делали уколы, то у него только вид белого халата условнорефлекторно будет вызывать частые сердцебиения.

Об этом же свидетельствует изменение сердечной деятельности у спортсменов перед стартом, учащихся и студентов— перед экзаменами.

Импульсы из центральной нервной системы передаются одновременно по нервам ас сердцу и из сосудодвигательного центра по другим нервам к кровеносным сосудам. Поэтому обычно нараздражение, поступившее из внешней или внутренней среды организма, рефлекторно отвечают исердце, и сосуды.

Гуморальная регуляция кровообращения

На деятельность сердца и сосудов оказывают влияние химические вещества, находящиеся в крови. Так, в железах внутренней секреции — надпочечниках — вырабатывается гормон адреналин (рис. 73). Он учащает и усиливает деятельность сердца и суживает просвет кровеносных сосудов.

В нервных окончаниях парасимпатические нервов образуется ацетилхолин, который расширяет просвет кровеносных сосудов и замедляет и ослабляет сердечную деятельность. На работу сердца оказывают влияние и некоторые соли.

Увеличение концентрации ионов калия тормозит работу сердца, а увеличение концентрации ионов кальция вызывает учащение и усиление сердечной деятельности.

[attention type=yellow]

Гуморальные влияния тесно связаны с нервной регуляцией деятельности системы кровообращения. Выделение самих химических веществ в кровь и поддержание их определенной концентрации в крови регулируется нервной системой.

[/attention]

Деятельность всей системы кровообращения направлена на обеспечение организма в разных условиях необходимым количеством кислорода и питательных веществ, выведение из клеток и органов продуктов обмена, сохранение на постоянном уровне кровяного давления. Это создает условия для сохранения постоянства внутренней среды организма.

Статья на тему Регуляция кровообращения

Источник: https://znaesh-kak.com/m/a/%D1%80%D0%B5%D0%B3%D1%83%D0%BB%D1%8F%D1%86%D0%B8%D1%8F-%D0%BA%D1%80%D0%BE%D0%B2%D0%BE%D0%BE%D0%B1%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D1%8F

Нервная регуляция работы сердца

Нервная регуляция сердца физиология

В нормальных физиологических условиях деятельность сердца в каждый момент соответствует изменениям внешней среды, окружающей организм, и колебаниям его внутренней среды.

Это соответствие деятельности сердца условиям существования организма обусловлено рефлекторной регуляцией деятельности сердца.

Нервные импульсы, регулирующие работу сердца, направляются к нему из центральной нервной системы по двум парам центробежных нервов: симпатическим и блуждающим.

Симпатические нервы сердца исходят из нейронов боковых рогов спинного мозга с 1-го по 5-й грудной сегменты и доходят у млекопитающих животных до нижнего шейного узла и до 1-го грудного (звездчатого) узла симпатической цепочки. В этих узлах предузловые волокна контактируют с телами расположенных в них нейронов, из которых после узловые волокна направляются к мышечным волокнам сердца.

Ядра блуждающих нервов расположены в продолговатом мозге. Из них волокна этих нервов доходят до нервных узлов сердца. Большая часть волокон правого блуждающего нерва доходит до синусоатриального узла, а меньшая — до атриовентрикулярного узла. Наоборот, большая часть волокон левого блуждающего нерва доходит до атриовентрикулярного узла, а меньшая — до синусоатриального узла.

При подходе к сердцу симпатические волокна присоединяются к волокнам блуждающего нерва, и поэтому значительная часть нервов сердечного сплетения содержит и те и другие волокна.

Симпатические нервы сердца

Раздражение симпатических нервов сердца вызывает ускорение работы сердца. Этот факт открыли в 1866 г. братья Цион, которые назвали волокна, оказывающие это действие, ускорителями сердца.

Гаскел обнаружил у черепахи, а И. П. Павлов у собаки существование усиливающих симпатических нервов сердца, раздражение которых повышает силу сердечных сокращений и может вновь вызвать работу остановленного сердца. Так как усиливающий нерв (по опытам И. II.

Павлова) оказывает свое влияние и на обескровленное сердце, то его действие не зависит от увеличения кровоснабжения. И. П. Павлов считал его трофическим нервом, усиливающим обмен веществ сердечной мышцы. Гаскелл также считал, что усиливающий нерв изменяет функциональные свойства мускулатуры сердца.

Усиливающий нерв — это нерв «повышающий все жизненные свойства сердечного мускула» (И. П. Павлов), т. е. возбудимость, сократимость и проводимость.

При раздражении ускоряющих нервов наступает разлад сокращений предсердий и желудочков: предсердия начинают сокращаться чаще, чем желудочки. Например, на одно сокращение желудочков приходится два сокращения предсердий (ритм 1:2).

Раздражение усиливающего нерва возвращает к нормальному соотношению сокращений предсердий и желудочков (ритм 1:1).

Следовательно, симпатические нервы оказывают при возбуждении положительно хронотропное и положительно инотропное действия.

[attention type=red]

Кроме того, симпатическим нервам свойственны положительно батмотропное, положительно дромотропное и положительно тонотропное действия (увеличение тонуса сокращений сердечной мышцы).

[/attention]

Действие симпатических нервов начинается не с момента раздражения, а после значительного латентного периода и продолжается некоторое время после окончания раздражения.

Существует также незначительный тонус симпатических нервов или их постоянное влияние на сердце благодаря эфферентным импульсам, которые поступают из высшего отдела симпатической нервной системы. При выключении симпатических нервов ритм сокращений сердца замедляется.

Блуждающие нервы сердца

Раздражение блуждающих нервов вызывает торможение сокращений сердца вплоть до полной его остановки в диастоле (братья Вебер, 1845). В истории физиологии этот факт был первым случаем обнаружения тормозящего влияния на орган при раздражении нерва. Замедление сердцебиений при раздражении блуждающих нервов обозначается как отрицательно хронотропное действие.

Кроме того, раздражение блуждающих нервов вызывает понижение возбудимости сердца (отрицательно батмотропное действие), понижение скорости проведения возбуждения в сердце (отрицательно дромотропное действие), уменьшение силы сокращений сердца (отрицательно инотропное действие), увеличение расслабления мышцы в диастоле (отрицательно тонотропное действие).

Правый блуждающий нерв вызывает преимущественно отрицательно хроно- и инотропное действия в предсердиях, а левый блуждающий нерв — преимущественно отрицательно дромо- и инотропное действия в желудочках.

Отрицательно дромотропное влияние блуждающих нервов может выразиться в том, что предсердия начинают сокращаться в более частом ритме, чем желудочки, что указывает на возникновение частичного блока между предсердиями и желудочками.

При продолжающемся сильном раздражении блуждающих нервов у теплокровных животных наблюдается «ускользание» сердца из-под влияния этих нервов.

Несмотря на то,что раздражение нерва продолжается, работа сердца начинает приближаться к нормальной. Однако полного прекращения торможения не происходит. Таким образом, избегается смертельная опасность остановки сердца.

Это «ускользание», как предполагается, связано с действием симпатических нервов.

В отличие от симпатических нервов ядра блуждающих нервов в продолговатом мозге находятся в более отчетливо выраженном тонусе.

Явление тонуса ядер блуждающих нервов состоит в том, что они постоянно находятся в состоянии некоторого возбуждения.

Установлено, что тонус ядер блуждающих нервов поддерживается присутствующими в крови адреналином и ионами кальция. Эти вещества возбуждают симпатическую нервную систему.

[attention type=green]

В лаборатории А. А. Ухтомского было показано, что возбуждение симпатических нервов облегчает тормозящее действие блуждающих нервов.

[/attention]

Тонус блуждающих нервов увеличивается при повышении внутричерепного давления и давления в кровеносных сосудах продолговатого мозга, в аорте, разветвлении сонной артерии и других кровеносных сосудах, а также при возбуждении рецепторов, расположенных в других участках тела.

В 1884 г. Н. Е. Введенский доказал, что во время торможения, вызываемого блуждающими нервами, в сердце происходят восстановительные, ассимиляционные (анаболические) процессы.

Взаимоотношения блуждающих и симпатических нервов сердца. Между обеими парами нервов существуют отношения не антагонизма, а взаимодействия.

Перерезка всех нервов сердца учащает его работу, что указывает на преобладание тонуса центров блуждающих нервов над симпатическими. Животные после этой операции не могут производить усиленных движений, так как отсутствует регуляция работы сердца.

Учащение и усиление работы сердца получается не только при возбуждении симпатических нервов, но и при одновременном понижении тонуса блуждающих нервов. Наоборот, замедление и ослабление работы сердца происходит не только при повышении тонуса блуждающих нервов, но и при одновременном уменьшении тонуса симпатических нервов.

Источник: https://www.polnaja-jenciklopedija.ru/biologiya/nervnaya-regulyatsiya-raboty-serdtsa.html

Регуляция тонуса кровеносных сосудов

Нервная регуляция сердца физиология

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

Все сосуды, за исключением капилляров, имеют гладкомышечные клетки (ГМК), благодаря которым меняется просвет сосуда, следовательно сопротивление кровотоку и интенсивность кровотока меняется в данном регионе.

Местные механизмы регуляции:

  • всем сосудам, имеющим ГМК, свойственен исходный — базальный тонус, создаваемый автоматией гладких мышц;
  • под влиянием различных факторов базальный тонус может усиливаться, при этом сосуды суживаются и в регион поступает меньше крови;
  • когда тонус сосудов уменьшается, они расширяются и кровоток в регион возрастает.

Уменьшение тонуса приводит к расширению сосудов, повышение — у сужению сосудов.

на новости сайта в соцсетях!

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

Тонус сосудов

Тонус — напряжение, создаваемое асинхронным сокращением ГМК среднего слоя стенки сосудов, обладающих автоматией.

Компоненты тонуса:

  • базальный тонус,
  • гуморальный,
  • центральный (нейрогенный).

Механизмы регуляции тонуса сосудов:

  1. Местные механизмы, обеспечивающие кровоток через отдельные органы и ткани, то есть контролирующие величину кровотока в отдельных регионах.
  2. Центральные механизмы, регулирующие системное кровообращение, — это постоянство АД, МОК, ОЦК и др.

Местные механизмы регуляции

Принцип местной регуляции — обеспечение независимости кровотока в органах от изменений системной гемодинамики, то есть обеспечение кровью данного региона в его интересах.

К местным механизмам регуляции тонуса кровеносных сосудов относятся:

  • миогенный,
  • метаболический.

Миогенный механизм:

  • миогенная ауторегуляция характерна для сосудов мозга, почек, сердца, печени, чревной области, то есть регионов, где необходимо поддержание постоянного кровотока;
  • адекватным раздражителем ГМК является их растяжение;
  • при увеличении артериального давления (АД) -> растяжение стенок сосудов -> сокращение ГМК сосудов -> увеличение тонуса сосудов и сохранение прежнего просвета -> кровоток в сосудах при этом не меняется;
  • уменьшение АД вызывает снижение тонуса сосудов вследствие расслабления ГМК:
    • при этом, несмотря на уменьшение АД, сохраняется поступление в сосуды того же объема крови,
    • таким образом, на величину базального тонуса влияет уровень АД.

Метаболический механизм:

  • продукты метаболизма, расширяя сосуды, усиливают кровоток в работающих органах;
  • в результате недостаточного снабжения региона кислородом и питательными веществами, в тканях накапливаются метаболиты и кровоток усиливается вследствие расширения прекапилляров.

Тонус сосудов уменьшается при снижении давления кислорода и углекислого газа, увеличении ионов H, C3H6O3 и температуры — вследствие этого увеличивается кровоток в работающих органах пропорционально их активности.

Центральные механизмы регуляции

  • нервные (рефлекторные),
  • гуморальные.

Нервные механизмы

Вазомоторные — сосудодвигательные нервы:

  • вазоконстрикторы — сосудосуживающие нервы,
  • вазодилататоры — сосудорасширяющие нервы.

Вазоконстрикторы

  1. Все вазоконстрикторы — это нервы симпатические адренергические.
  2. Сосудосуживающий эффект наступает при воздействии норадреналина (НА) на α-адренорецепторы.
  3. Импульсы по симпатическим вазоконстрикторам постоянно поступают к сосудам от нейронов боковых рогов тораколюмбальных сегментов СМ с частотой 1-3 имп/с, поддерживая тонус покоя.
  4. При частоте больше 3 имп/с (от 3 до 15) — повышенный тонус.

Вазодилататоры

  1. Парасимпатические холинэргические нервы:
    • chorda tympani — барабанная струна — расширяет сосуды подчелюстной слюнной железы;
    • n. lingualis — язычный нерв — расширяет сосуды языка;
    • n. glossopharingeus — языкоглоточный — расширяет сосуды миндалин, задней трети языка, околоушной слюнной железы;
    • n. pelvicus — тазовый — расширяет сосуды одноименной области.
  2. Симпатические нервы:
    • холинэргические, иннервирующие сосуды скелетных мышц;
    • адренергические — сосудосуживающий эффект наступает при воздействии НА на β-адренорецепторы сосудов сердца, мозга и легких.
  3. Заднекорешковые чувствительные нервы — расширяют сосуды кожи по механизму аксон-рефлекса (медиатор — АХ).

Аксон-рефлекс:

  • расширение сосудов кожи наблюдается при укусе насекомых, под действием горчичников, потирании, почесывании кожи;
  • кровеносные сосуды, которые не имеют специальных вазодилататоров, расширяются за счет снижении тонуса вазоконстрикторов (напр.: в органах брюшной полости).

Импульсы по вазомоторным нервам к сосудам постоянно идут от сосудодвигательного центра (СДЦ).

Основная локализация сосудодвигательного центра — в продолговатом мозге (Овсянников, 1871).

Сосудодвигательный центр (СДЦ)

Центры СМ (боковые рога серого вещества) -> бульбарные центры: сосудосуживающий, сосудорасширяющие -> центры гипоталамуса (передний (депрессорная зона) и задний (прессорная зона) отделы гипоталамуса) -> корковое представительство СДЦ.

После перерезки ствола мозга выше четверохолмия АД не снижается, а при перерезке мозга между продолговатым и спинным оно падает со 120 мм рт. ст. до 70-80.

СДЦ состоит из 2-х отделов:

  • прессорный отдел,
  • депрессорный отдел.

Оба эти отдела не имеют четких границ. Они располагаются на дне 4-го желудочка среди нейронных структур ретикулярной формации и взаимно перекрывают друг друга.

Прессорные и депрессорные нейроны СДЦ находятся в реципрокных отношениях.

Прессорных нейронов больше, чем депрессорных. О состоянии СДЦ судят по прессорным нейронам.

К СДЦ относят также и другие отделы ЦНС.

В покое гипоталамус не принимает активного участия в регуляции АД.

Влияние коры на регуляцию АД — условнорефлекторное — повышение АД перед стартом, при волнении.

Вывод: многоэтажная система регуляции функций сердечно-сосудистой системы обеспечивает адекватное приспособление к условиям внешней и внутренней среды.

Тонус СДЦ зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон.

Сосудистые рефлексы

Сосудистые рефлексы подразделяются на:

  • собственные и
  • сопряженные.

Собственные рефлексы

Осуществляются с механорецепторов, расположенных в сердце и в кровеносных сосудах (барорецепторов).

Данные рецепторы стабилизируют АД.

Различают собственные рефлексы:

  • прессорные — повышающие пониженное АД,
  • депрессорные — понижающие повышенное АД.

Рефлексогенные зоны (зоны максимального скопления рецепторов):

  • дуга аорты,
  • каротидный синус (бифуркация общей сонной артерии на наружную и внутреннюю).

Депрессорный рефлекс: при увеличении АД -> раздражаются барорецепторы дуги аорты и каротидного синуса -> возбуждение по чувствительным нервам — аортальный (депрессорный) и синусный (нерв Геринга) -> продолговатый мозг -> возбуждается центр вагуса и тормозится сосудодвигательный центр -> ЧСС уменьшается -> сосуды расширяются -> АД снижается (нормализуется).

При падении АД — все наоборот, то есть осуществляется прессорный рефлекс.

Собственные рефлексы:

  • осуществляются также с хеморецепторов, находящихся в аортальном и каротидном тельцах;
  • они возбуждаются при увеличении в крови CO2, ионов H и при уменьшении O2;
  • импульсы, поступающие от хеморецепторов в продолговатый мозг, увеличивают тонус СДЦ, что приводит к увеличению давления.

Хеморецепторы находятся не в стенке сосуда, а в аортальном и каротидном тельцах или клубочках под адвентицией сосуда и пронизан сетью капилляров.

От хеморецепторов -> СДЦ продолговатого мозга -> СДЦ возбуждается -> сужение сосудов -> увеличение АД -> быстрое обновление крови.

Сопряженные рефлексы

Осуществляются с рецепторов, расположенных вне сердца и сосудов:

  • они нарушают стабильность АД, вызывая прессорные реакции;
  • различают сопряженные рефлексы:
    • экстероцептивные — с рецепторов кожи,
    • интероцептивные — с внутренних органов.

Гуморальная регуляция

  1. Гормоны, образованные в железах внутренней секреции: адреналин, норадреналин, вазопрессин и др. — суживают сосуды.
  2. Вазоактивные агенты (местные гормоны), образующиеся в тканях, — ацетилхолин, брадикинин, гистамин, простагландины и др. — расширяют сосуды.
  3. Вещества двоякого действия — катехоламины:
    • альфа — сужение
    • бетта — расширение.

Гормоны адреналин, норадреналин суживают артерии и артериолы кожи, скелетных мышц, органов брюшной полости.

Коронарные сосуды, сосуды мозга, легких при этом расширяются, так как все это зависит от того, какие адренорецепторы воспринимают гормон.

При взаимодействии НА с α-адренорецепторами сосуды суживаются, при взаимодействии с β-адренорецепторами — расширяются. В сосудах сердца, легких, мозга преобладают β-адренорецепторы.

Вазопрессин суживает в основном артериолы и вены.

Ангиотензин II образуется из α-глобулинов плазмы под действием ренина (клетки ЮГА коркового слоя почек) и также суживают сосуды.

Тонус сосудов:

  • базальный тонус — тонус ГМК и влияние симпатических вазоконстрикторов;
  • тонус покоя — тонус ГМК и влияние симпатических нервов с частотой 1-3 имп/с;
  • повышенный тонус — импульсы по симпатическим вазоконстрикторам с частотой 3-15 имп/с.

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/regulyatsiya-tonusa-krovenosnyh-sosudov

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: