Окисление этанола до уксусной кислоты

Содержание
  1. Химические свойства спиртов
  2. 1.1. Взаимодействие с раствором щелочей
  3. 1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
  4. 1.3. Взаимодействие с гидроксидом меди (II)
  5. 2.1. Взаимодействие с галогеноводородами
  6. 2.2. Взаимодействие с аммиаком
  7. 2.3. Этерификация (образование сложных эфиров)
  8. 2.4. Взаимодействие с кислотами-гидроксидами
  9. 3. Реакции замещения группы ОН
  10. 3.1. Внутримолекулярная дегидратация
  11. 3.2. Межмолекулярная дегидратация
  12. 4. Окисление спиртов
  13. 4.1. Окисление оксидом меди (II)
  14. 4.2. Окисление кислородом в присутствии катализатора
  15. 4.3. Жесткое окисление
  16. 4.4. Горение спиртов
  17. 5. Дегидрирование спиртов 
  18. Организм приспособлен к обезвреживанию этанола
  19. Обезвреживание этанола
  20. Реакции окисления этанола и ацетальдегида
  21. Побочные эффекты обезвреживания этанола
  22. Токсичность ацетальдегида
  23. Спиртовое брожение
  24. Специфические реакции спиртового брожения
  25. Получение карбоновых кислот | Химия онлайн
  26. Общие способы получения карбоновых кислот
  27. В промышленности
  28. В лаборатории
  29. Специфические способы получения важнейших кислот
  30. Получение уксусной кислоты из бутана
  31. Физические свойства
  32. В промышленности
  33. применение
  34. Безопасность
  35. Уксусная кислота
  36. История
  37. Физические свойства
  38. В промышленности
  39. Каталитическое карбонилирование метанола
  40. Биохимический способ производства
  41. Гидратация ацетилена в присутствии ртути и двухвалентных солей ртути
  42. Химические свойства
  43. Применение
  44. Безопасность

Химические свойства спиртов

Окисление этанола до уксусной кислоты

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

[attention type=yellow]

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

[/attention]

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:
  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

опыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:
Кислотные свойства одноатомных спиртов уменьшаются в ряду:CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

опыт взаимодействия глицерина с натрием можно посмотреть здесь.

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

опыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

опыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду: третичные > вторичные > первичные > CH3OH.

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:
Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

В качестве катализатора этой реакции также используют оксид алюминия.

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.
Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.Первичный спирт → альдегид → карбоновая кислота
Метанол окисляется сначала в формальдегид, затем в углекислый газ:Метанол → формальдегид → углекислый газ
Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

опыт окисления этанола оксидом меди (II) можно посмотреть здесь.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

опыт каталитического окисления этанола кислородом можно посмотреть здесь.

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метанол СН3-ОНCO2K2CO3
Первичный спирт  R-СН2-ОНR-COOH/ R-CHOR-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2R1-СО-R2R1-СО-R2
Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ
Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота
Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания метанола:

2CH3OH + 3O2 = 2CO2 + 4H2O

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

Например, при дегидрировании этанола образуется этаналь
Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Источник: https://chemege.ru/ximicheskie-svojstva-spirty/

Организм приспособлен к обезвреживанию этанола

Окисление этанола до уксусной кислоты

В организм поступают и в результате метаболизма образуются в клетках головного мозга и печени, в других тканях, при жизнедеятельности микрофлоры кишечника различные спирты (алифатической, ароматической, стероидной природы, ретиноиды, фарнезол и др.) и альдегиды (ароматические, алифатические, продукты пероксидации липидов и др.), которые могут являться промежуточными метаболитами или конечными продуктами.

Взаимопревращение спиртов и альдегидов осуществляют алкогольдегидрогеназы. Их существует 6 подклассов, в каждом подклассе имеются многочисленные изоферменты, обнаруженные во многих тканях.

С медицинской и социальной точки зрения определенный интерес вызывает метаболизм этилового спирта в организме человека.

Этанол является энергетически богатым соединением: при метаболизме 125 г этанола количество образующегося НАДН такое же, как при окислении 500 г глюкозы.

При полноценном питании и частом потреблении этилового спирта, например, в виде пива, “этанольный” ацетил-SКоА не столько сгорает в ЦТК, сколько используется для синтеза холестерола и триацилглицеролов, то есть происходит переход энергии этанола в запасную форму, что приводит к гиперлипидемии,  “пивному ожирению” и жировой инфильтрации печени.

Обезвреживание этанола

Метаболизм поступающего этанола в организме происходит преимущественно в печени тремя способами.

Первый путь начинается в цитозоле и заключается в окислении спирта по алкогольдегидрогеназному пути до ацетальдегида, который переходит в митохондрии и окисляется  до уксусной кислоты. Последняя в виде ацетил-SКоА поступает в ЦТК. Через этот путь проходит 80-90% всего этанола.

Реакции окисления этанола и ацетальдегида

За окисление 10-20% этанола отвечает алкогольоксидаза (цитохром P450), также называемая микросомальная этанолокисляющая система (МЭОС).  При регулярном поступлении этанола доля микросомального окисления возрастает (до 7 раз), так как этанол является индуктором алкогольоксидазы и количество ее молекул увеличивается.

Третий способ – реакция окисления этанола каталазой с использованием перекиси водорода. Протекает реакция в пероксисомах и цитозоле, главным образом, нервных клеток, значение ее не велико, не более 2%.

Побочные эффекты обезвреживания этанола

Поскольку при утилизации этанола образуется большое количество НАДН, то в цитозоле гепатоцитов активируется 11-я реакция гликолиза (превращение пирувата в лактат) и восстановление диоксиацетонфосфата в глицерол-3-фосфат. Это приводит к гипогликемии в постабсорбтивный период, так как пировиноградная кислота и диоксиацетонфосфат являются субстратами глюконеогенеза.

Одновременно накопление “алкогольного” ацетил-SКоА ингибирует пируватдегидрогеназу, что еще больше усиливает накопление лактата.  Накопление молочной кислоты в крови обусловливает лактатацидемию (лактоацидоз).

Одновременно из-за относительной недостаточности оксалоацетата, использованного в глюконеогенезе, избыток “алкогольного” ацетил-SКоА не успевает окислиться в цикле трикарбоновых кислот и перенаправляется на синтез кетоновых тел, что обеспечивает возникновение кетоацидоза.

Если запасы гликогена в печени изначально невелики (голодание, недоедание, астеническое телосложение) или израсходованы (после физической работы), то при приеме алкоголя натощак гипогликемия наступает быстрее и может быть причиной резкого ухудшения самочувствия и потери сознания. К этому стоит добавить сильный диуретический эффект этанола (подавление секреции вазопрессина), ведущий к быстрому обезвоживанию организма и снижению кровоснабжения головного мозга со всеми вытекающими последствиями.

Токсичность ацетальдегида

Ацетальдегид может неферментативно связывать сульфгидрильные (HS-) группы белков и гетерополисахаридов, и аминогруппы (NH2-) белков, нуклеиновых кислот, фосфолипидов и других соединений:

1. Повреждение нативной структуры белков, например

  • ведет к изменению активности ферментов дыхательной цепи и разобщению окислительного фосфорилирования,
  • снижает полимеризацию тубулина микротрубочек, что проявляется как возникновение телец Мэллори в гепатоцитах (алкогольный гиалин),
  • ацетальдегид-белковые комплексы запускают цитотоксические механизмы иммунокомпетентных клеток по отношению к печени и к другим органам.

2. Изменение структуры мембранных фосфолипидов – активация перекисного окисления и повышение текучести мембран. Возрастает проницаемость мембран для воды и электролитов, происходит набухание клеток и их дисфункция.

3. Появление мутаций в ДНК и, как следствие, снижение репарации, стимулированный апоптоз клеток или канцерогенез, особенно для клеток печени,

Ацетальдегид вступает в неферментативную реакцию конденсации с катехоламинами, а продукты реакции обладают морфино- и опиатоподобным действием. Выявлено, что большинство проявлений алкоголизма связано с воздействием на организм не самого этанола, а ацетальдегида. Под его действием увеличивается образование дофамина и норадреналина в нервной системе и органах, и с накоплением дофамина часто связано развитие абстинентного синдрома и белой горячки.

Спиртовое брожение

Образование этилового спирта из глюкозы происходит в анаэробных условиях в дрожжах и некоторых видах плесневых грибков. Суммарное уравнение реакции:

C6H12О6 → 2 CО2 + 2 С2Н5ОН

До стадии образования пирувата реакции спиртового брожения совпадают с реакциями гликолиза. Отличия заключаются только в дальнейшем превращении пировиноградной кислоты. Цель этих превращений у указанных организмов та же, что и в гликолизе (молочнокислом брожении) – удалить пируват из клетки и окислить НАДН, который образовался в 6-й реакции.

Специфические реакции спиртового брожения

Источник: https://biokhimija.ru/uglevody/obmen-jetanola.html

Получение карбоновых кислот | Химия онлайн

Окисление этанола до уксусной кислоты

Некоторые карбоновые кислоты встречаются в природе в свободном состоянии (муравьиная, уксусная, масляная, валериановая и др.). Однако, основным источником карбоновых кислот является органический синтез. Рассмотрим основные способы получения карбоновых кислот

Общие способы получения карбоновых кислот

1. Окисление первичных спиртов и альдегидов под действием различных окислителей

Окисление спиртов 

В качестве окислителей применяют KMnO4 и K2Cr2O7.

Например: 

Окисление альдегидов

Для окисления альдегидов используются те же реагенты, что и для спиртов.

При окислении перманганатом калия происходит обесцвечивание фиолетово-розового раствора.

При окислении дихроматом калия — цвет меняется с оранжевого на зеленый.

А также для них характерны реакции «серебряного зеркала» и окисление гидроксидом меди (II) – качественные реакции альдегидов:

2. Гидролиз галогензамещенных углеводородов, содержащих три атома галогена у одного атома углерода

В результате реакции образуются спирты, содержащие три группы ОН у одного атома углерода. Такие спирты неустойчивы и отщепляют воду с образованием карбоновой кислоты:

3. Получение карбоновых кислот из цианидов (нитрилов)

[attention type=red]

Этот способ позволяет наращивать углеродную цепь при получении исходного цианида. Дополнительный атом углерода вводят в состав молекулы, используя реакцию замещения галогена в молекуле галогенуглеводорода цианидом натрия:

[/attention]

Образующийся нитрил уксусной кислоты CH3-CN  (ацетонитрил, метилцианид) при нагревании гидролизуется с образованием ацетата аммония:

При подкислении раствора выделяется кислота:

4. Использование реактива Гриньяра (по схеме)

5. Гидролиз галогенангидридов кислот

С водой низшие хлорангидриды реагируют чрезвычайно энергично, образуя соответствующую карбоновую кислоту и соляную кислоту:

В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов кислородом воздуха ( в присутствии катализаторов – солей марганца или при нагревании под давлением)

Обычно образуется смесь кислот. При окислении бутана единственным продуктом является уксусная кислота:

3. Окисление алкенов и алкинов

При жестком окислении алкенов кипящим раствором KMnO4 в кислой среде происходит полный разрыв двойной связи:

При жестком окислении (нагревание, концентрированные растворы, кислая среда) происходит расщепление углеродного скелета молекулы алкина по тройной связи и образуются карбоновые кислоты:

4. Окисление гомологов бензола (получение бензойной кислоты)

Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

В лаборатории

1. Гидролиз сложных эфиров

При кислотном гидролизе получают карбоновые кислоты и спирты (реакция обратная этерификации):

2. Из солей карбоновых кислот

3. Гидролиз ангидридов кислот

При легком нагревании с водой ангидриды образуют соответствующие карбоновые кислоты:

4. Щелочной гидролиз галоген производных карбоновых кислот

Специфические способы получения важнейших кислот

Способы получения НСООН

1. Взаимодействие оксида углерода (II) с гидроксидом натрия

Муравьиную кислоту получают нагреванием  под давлением гидроксида натрия и оксида углерода (II) под давлением и обработкой полученного формиата натрия серной кислотой:

2. Каталитическое окисление метана

3. Декарбоксилирование щавелевой кислоты

Муравьиную кислоту можно получить при нагревании щавелевой кислоты:

Способы получения СН3СООН

Получение уксусной кислоты для химических целей

1. Синтез из ацетилена

Данный способ получения уксусной кислоты основан на окислении уксусного альдегида, который в свою очередь получают из ацетилена по реакции Кучерова (ацетилен получают из очень доступного сырья — метана):

2. Каталитическое окисление бутана

Большое значение имеет способ получения уксусной кислоты, основанный на окислении бутана кислородом воздуха:

[attention type=green]

Процесс получения уксусной кислоты из метана является многостадийным (метан – ацетилен – уксусный альдегид – уксусная кислота). Ее получение окислениям будана сокращает число стадий, что дает большой экономический эффект.

[/attention]

3. Каталитическое карбонилирование метанола   

Получение уксусной кислоты для пищевых целей

4. Уксуснокислое брожение этанола

Уксусную кислоту для пищевых целей получают уксуснокислым брожением жидкостей, содержащих спирт (вино. пиво):

Карбоновые кислоты

Источник: https://himija-online.ru/organicheskaya-ximiya/karbonovye-kisloty/poluchenie-karbonovyx-kislot.html

Получение уксусной кислоты из бутана

Окисление этанола до уксусной кислоты

Уксус является продуктом брожения вина и известен человеку с давних времен.

Первое упоминание о практическом применении уксусной кислоты относится к III веку до н. э. Греческий учёный Теофраст впервые описал действие уксуса на металлы, приводящее к образованию некоторых используемых в искусстве пигментов. Уксус применялся для получения свинцовых белил, а также ярь-медянки (зелёной смеси солей меди, содержащей помимо всего ацетат меди).

https://www..com/watch?v=ytadvertise

В Древнем Риме готовили специально прокисшее вино в свинцовых горшках. В результате получался очень сладкий напиток, который называли «сапа».

[attention type=red]

Сапа содержала большое количество ацетата свинца — очень сладкого вещества, которое также называют свинцовым сахаром или сахаром Сатурна.

[/attention]

Высокая популярность сапы была причиной хронического отравления свинцом, распространённого среди римской аристократии.

В VIII веке арабский алхимик Джабир ибн Хайян впервые изложил способы получения уксуса.

Во времена Эпохи Возрождения уксусную кислоту получали путём возгонки ацетатов некоторых металлов (чаще всего использовался ацетат меди (II)) (при сухой перегонке ацетатов металлов получается ацетон, вполне промышленный способ до середины XX века).

Свойства уксусной кислоты меняются в зависимости от содержания в ней воды. В связи с этим многие века химики ошибочно считали, что кислота из вина и кислота из ацетатов являются двумя разными веществами.

Идентичность веществ, полученных различными способами, была показана немецким алхимиком XVI века Андреасом Либавиусом (нем. Andreas Libavius) и французским химиком Пьером Огюстом Аде (фр. Pierre Auguste Adet).

В 1847 году немецкий химик Адольф Кольбе впервые синтезировал уксусную кислоту из неорганических материалов. Последовательность превращений включала в себя хлорирование сероуглерода до тетрахлорметана с последующим пиролизом до тетрахлорэтилена. Дальнейшее хлорирование в воде привело к трихлоруксусной кислоте, которая после электролитического восстановления превратилась в уксусную кислоту.

В конце XIX — начале XX века большую часть уксусной кислоты получали перегонкой древесины. Основным производителем уксусной кислоты являлась Германия. В 1910 году ею было произведено более 10 тысяч тонн кислоты, причем около 30 % этого количества было израсходовано на производство красителя индиго.

Физические свойства

Уксусная кислота представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом. Гигроскопична. Неограниченно растворима в воде. Смешивается со многими растворителями; в уксусной кислоте хорошо растворимы неорганические соединения и газы, такие как HF, HCl, HBr, HI и другие. Существует в виде циклических и линейных димеров.

Абсолютная уксусная кислота называется ледяной, ибо при замерзании образует льдовидную массу.

  • Давление паров (в мм. рт. ст.):
    • 10 ( 17,1 °C)
    • 40 ( 42,4 °C)
    • 100 ( 62,2 °C)
    • 400 ( 98,1 °C)
    • 560 ( 109 °C)
    • 1520 ( 143,5 °C)
    • 3800 ( 180,3 °C)
  • Относительная диэлектрическая проницаемость: 6,15 ( 20 °C)
  • Динамическая вязкость жидкостей и газов (в мПа·с): 1,155 ( 25,2 °C); 0,79 ( 50 °C)
  • Поверхностное натяжение: 27,8 мН/м ( 20 °C)
  • Удельная теплоёмкость при постоянном давлении: 2,01 Дж/г·K ( 17 °C)
  • Стандартная энергия Гиббса образования ΔfG0 (298 К, кДж/моль): −392,5 (ж)
  • Стандартная энтропия образования ΔfS0 (298 К, Дж/моль·K): 159,8 (ж)
  • Энтальпия плавления ΔHпл: 11,53 кДж/моль
  • Температура вспышки в воздухе: 38 °C
  • Температура самовоспламенения на воздухе: 454 °C
  • Теплота сгорания: 876,1 кДж/моль

Уксусная кислота образует двойные азеотропные смеси со следующими веществами.

Вещество tкип, °C массовая доля уксусной кислоты
четырёххлористый углерод76,53 %
циклогексан81,86,3 %
бензол88,052 %
толуол104,934 %
гептан91,933 %
трихлорэтилен86,54 %
этилбензол114,6566 %
о-ксилол11676 %
п-ксилол115,2572 %
бромоформ11883 %
  • Уксусная кислота образует тройные азеотропные смеси
    • с водой и бензолом (tкип 88 °C);
    • с водой и бутилацетатом (tкип 89 °C).

Уксусная кислота обладает всеми свойствами карбоновых кислот, и иногда рассматривается как их наиболее типичный представитель (в отличие от муравьиной кислоты, которая обладает некоторыми свойствами альдегидов). Связь между водородом и кислородом карбоксильной группы (−COOH) карбоновой кислоты является сильно полярной, вследствие чего эти соединения способны легко диссоциировать и проявляют кислотные свойства.

В результате диссоциации уксусной кислоты образуется ацетат-ион CH3COO− и протон H . Уксусная кислота является слабой одноосновной кислотой со значением pKa в водном растворе равным 4,75. Раствор с концентрацией 1,0 M (приблизительная концентрация пищевого уксуса) имеет pH 2,4, что соответствует степени диссоциации 0,4 %.

На слабой диссоциации уксусной кислоты в водном растворе основана качественная реакция на наличие солей уксусной кислоты: к раствору добавляется сильная кислота (например, серная), если появляется запах уксусной кислоты, значит, соль уксусной кислоты в растворе присутствует (кислотные остатки уксусной кислоты, образовавшиеся из соли, связались с катионами водорода от сильной кислоты и получилось большое количество молекул уксусной кислоты).

Исследования показывают, что в кристаллическом состоянии молекулы образуют димеры, связанные водородными связями.

Mg 2CH3COOH → (CH3COO)2Mg H2↑ CH3COOH Cl2 → CH2ClCOOH HCl [attention type=yellow][attention type=yellow]

Этим путём могут быть получены также дихлоруксусная (CHCl2COOH) и трихлоруксусная (CCl3COOH) кислоты.

[/attention][/attention]

Уксусная кислота может быть восстановлена до этанола действием алюмогидрида лития. Она также может быть превращена в хлорангидрид действием тионилхлорида. Натриевая соль уксусной кислоты декарбоксилируется при нагревании со щелочью, что приводит к образованию метана и карбоната натрия.

В промышленности

ранними промышленными методами получения уксусной кислоты были окисление ацетальдегида и бутана.

https://www..com/watch?v=ytpolicyandsafety

ацетальдегид окислялся в присутствии ацетата марганца (ii) при повышенной температуре и давлении. выход уксусной кислоты составлял около 95 % при температуре 50— 60 °с.

2ch3cho o2 ⟶ 2ch3cooh 

окисление н-бутана проводилось при 150 атм. катализатором этого процесса являлся ацетат кобальта.

2c4h10 5o2 ⟶ 4ch3cooh 2h2o

оба метода базировались на окислении продуктов крекинга нефти. в результате повышения цен на нефть оба метода стали экономически невыгодными, и были вытеснены более совершенными каталитическими процессами карбонилирования метанола.

применение

Уксусную кислоту, концентрация которой близка к 100 %, называют ледяной. 70—80 % водный раствор уксусной кислоты называют уксусной эссенцией, а 3—15 % — уксусом. Водные растворы уксусной кислоты используются в пищевой промышленности (пищевая добавка E260) и бытовой кулинарии, а также в консервировании и для избавления от накипи.

Уксусную кислоту применяют для получения лекарственных и душистых веществ, как растворитель (например, в производстве ацетилцеллюлозы, ацетона). Она используется в книгопечатании и крашении.

Уксусная кислота используется как реакционная среда для проведения окисления различных органических веществ. В лабораторных условиях это, например, окисление органических сульфидов пероксидом водорода, в промышленности — окисление пара-ксилола кислородом воздуха в терефталевую кислоту.

Поскольку пары уксусной кислоты обладают резким раздражающим запахом, возможно её применение в медицинских целях в качестве замены нашатырного спирта для выведения больного из обморочного состояния.

Безопасность

Безводная уксусная кислота — едкое вещество. Пары уксусной кислоты раздражают слизистые оболочки верхних дыхательных путей. Порог восприятия запаха уксусной кислоты в воздухе находится в районе 0,4 мг/л. Предельно допустимая концентрация в атмосферном воздухе составляет 0,06 мг/м³, в воздухе рабочих помещений — 5 мг/м³.

Действие уксусной кислоты на биологические ткани зависит от степени её разбавления водой. Опасными считаются растворы, в которых концентрация кислоты превышает 30 %. Концентрированная уксусная кислота способна вызывать химические ожоги, инициирующие развитие коагуляционных некрозов прилегающих тканей различной протяженности и глубины.

https://www..com/watch?v=ytpress

Токсикологические свойства уксусной кислоты не зависят от способа, которым она была получена. Смертельная доза составляет примерно 20 мл.

Последствиями приёма концентрированной уксусной кислоты являются тяжёлый ожог слизистой оболочки полости рта, глотки, пищевода и желудка; последствия всасывания уксусной эссенции — ацидоз, гемолиз, гемоглобинурия, нарушение свёртываемости крови, сопровождающееся тяжёлыми желудочно-кишечными кровотечениями.

https://www..com/watch?v=ytabout

При приёме уксусной кислоты внутрь следует выпить большое количество жидкости. Вызов рвоты является крайне опасным, так как вторичное прохождение кислоты по пищеводу усугубит ожог. Показано промывание желудка через зонд. Необходима немедленная госпитализация.

Источник: https://vsem-interesno.net.ru/poluchenie-uksusnoy-kisloty-butana/

Уксусная кислота

Окисление этанола до уксусной кислоты

Уксусная кислота (этановая кислота) CH3COOH — органическое соединение, слабая, предельная одноосновная карбоновая кислота. Соли и сложные эфиры уксусной кислоты называются ацетатами.

История

Уксус является продуктом брожения вина и известен человеку с давних времен.

Первое упоминание о практическом применении уксусной кислоты относится к III веку до н. э. Греческий учёный Теофраст впервые описал действие уксуса на металлы, приводящее к образованию некоторых используемых в искусстве пигментов. Уксус применялся для получения свинцовых белил, а также ярь-медянки (зелёной смеси солей меди, содержащей помимо всего ацетат меди).

В Древнем Риме готовили специально прокисшее вино в свинцовых горшках. В результате получался очень сладкий напиток, который называли «сапа».

[attention type=red]

Сапа содержала большое количество ацетата свинца — очень сладкого вещества, которое также называют свинцовым сахаром или сахаром Сатурна.

[/attention]

Высокая популярность сапы была причиной хронического отравления свинцом, распространённого среди римской аристократии.

В VIII веке арабский алхимик Джабир ибн Хайян впервые изложил способы получения уксуса.

Во времена Эпохи Возрождения уксусную кислоту получали путём возгонки ацетатов некоторых металлов (чаще всего использовался ацетат меди (II)) (при сухой перегонке ацетатов металлов получается ацетон, вполне промышленный способ до середины XX века).

Свойства уксусной кислоты меняются в зависимости от содержания в ней воды. В связи с этим многие века химики ошибочно считали, что кислота из вина и кислота из ацетатов являются двумя разными веществами.

Идентичность веществ, полученных различными способами, была показана немецким алхимиком XVI века Андреасом Либавиусом (нем. Andreas Libavius) и французским химиком Пьером Огюстом Аде (фр. Pierre Auguste Adet).

В 1847 году немецкий химик Адольф Кольбе впервые синтезировал уксусную кислоту из неорганических материалов. Последовательность превращений включала в себя хлорирование сероуглерода до тетрахлорметана с последующим пиролизом до тетрахлорэтилена. Дальнейшее хлорирование в воде привело к трихлоруксусной кислоте, которая после электролитического восстановления превратилась в уксусную кислоту.

В конце XIX — начале XX века большую часть уксусной кислоты получали перегонкой древесины. Основным производителем уксусной кислоты являлась Германия. В 1910 году ею было произведено более 10 тысяч тонн кислоты, причем около 30 % этого количества было израсходовано на производство красителя индиго.

Физические свойства

Уксусная кислота представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом. Гигроскопична. Неограниченно растворима в воде. Смешивается со многими растворителями; в уксусной кислоте хорошо растворимы неорганические соединения и газы, такие как HF, HCl, HBr, HI и другие. Существует в виде циклических и линейных димеров.

Абсолютная уксусная кислота называется ледяной, ибо при замерзании образует льдовидную массу.

  • Давление паров (в мм. рт. ст.):
    • 10 (+17,1 °C)
    • 40 (+42,4 °C)
    • 100 (+62,2 °C)
    • 400 (+98,1 °C)
    • 560 (+109 °C)
    • 1520 (+143,5 °C)
    • 3800 (+180,3 °C)
  • Относительная диэлектрическая проницаемость: 6,15 (+20 °C)
  • Динамическая вязкость жидкостей и газов (в мПа·с): 1,155 (+25,2 °C); 0,79 (+50 °C)
  • Поверхностное натяжение: 27,8 мН/м (+20 °C)
  • Удельная теплоёмкость при постоянном давлении: 2,01 Дж/г·K (+17 °C)
  • Стандартная энергия Гиббса образования ΔfG0 (298 К, кДж/моль): −392,5 (ж)
  • Стандартная энтропия образования ΔfS0 (298 К, Дж/моль·K): 159,8 (ж)
  • Энтальпия плавления ΔHпл: 11,53 кДж/моль
  • Температура вспышки в воздухе: +38 °C
  • Температура самовоспламенения на воздухе: 454 °C
  • Теплота сгорания: 876,1 кДж/моль

Уксусная кислота образует двойные азеотропные смеси со следующими веществами.

Веществоtкип, °Cмассовая доля уксусной кислоты
четырёххлористый углерод76,53 %
циклогексан81,86,3 %
бензол88,052 %
толуол104,934 %
гептан91,933 %
трихлорэтилен86,54 %
этилбензол114,6566 %
о-ксилол11676 %
п-ксилол115,2572 %
бромоформ11883 %
  • Уксусная кислота образует тройные азеотропные смеси
    • с водой и бензолом (tкип +88 °C);
    • с водой и бутилацетатом (tкип +89 °C).

В промышленности

Ранними промышленными методами получения уксусной кислоты были окисление ацетальдегида и бутана.

Ацетальдегид окислялся в присутствии ацетата марганца (II) при повышенной температуре и давлении. Выход уксусной кислоты составлял около 95 % при температуре +50—+60 °С.

2CH3CHO + O2 ⟶ 2CH3COOH 

Окисление н-бутана проводилось при 150 атм. Катализатором этого процесса являлся ацетат кобальта.

2C4H10 + 5O2 ⟶ 4CH3COOH + 2H2O

Оба метода базировались на окислении продуктов крекинга нефти. В результате повышения цен на нефть оба метода стали экономически невыгодными, и были вытеснены более совершенными каталитическими процессами карбонилирования метанола.

Каталитическое карбонилирование метанола

Каталитическая схема процесса фирмы Monsanto

Важным способом промышленного синтеза уксусной кислоты является каталитическое карбонилирование метанола моноксидом углерода, которое происходит по формальному уравнению:

CH3OH + CO ⟶ CH3COOH

Реакция карбонилирования метанола была открыта учеными фирмы BASF в 1913 году. В 1960 году эта компания запустила первый завод, производящий уксусную кислоту этим методом. Катализатором превращения служил йодид кобальта.

Метод заключался в барботаже монооксида углерода при температуре 180 °С и давлениях 200—700 атм через смесь реагентов. Выход уксусной кислоты составляет 90 % по метанолу и 70 % по СО. Одна из установок была построена в Гейсмаре (шт.

Луизиана) и долго оставалась единственным процессом BASF в США.

[attention type=green]

Усовершенствованная реакция синтеза уксусной кислоты карбонилированием метанола была внедрена исследователями фирмы Monsanto в 1970 году. Это гомогенный процесс, в котором используются соли родия в качестве катализаторов, а также йодид-ионы в качестве промоторов. Важной особенностью метода является большая скорость, а также высокая селективность (99 % по метанолу и 90 % по CO).

[/attention]

Этим способом получают чуть более 50 % всей промышленной уксусной кислоты.

В процессе фирмы BP в качестве катализаторов используются соединения иридия.

Биохимический способ производства

При биохимическом производстве уксусной кислоты используется способность некоторых микроорганизмов окислять этанол. Этот процесс называют уксуснокислым брожением. В качестве сырья используются этанолсодержащие жидкости (вино, забродившие соки), либо же просто водный раствор этилового спирта.

Реакция окисления этанола до уксусной кислоты протекает при участии фермента алкогольдегидрогеназы. Это сложный многоступенчатый процесс, который описывается формальным уравнением:

CH3CH2OH + O2 → CH3COOH + H2O

Гидратация ацетилена в присутствии ртути и двухвалентных солей ртути

C2H2 + H2O → Hg2 + CH3CHO  — Реакция Кучерова

CH3CHO →CrO3,H2SO4 CH3COOH 

Химические свойства

Уксусная кислота обладает всеми свойствами карбоновых кислот, и иногда рассматривается как их наиболее типичный представитель (в отличие от муравьиной кислоты, которая обладает некоторыми свойствами альдегидов). Связь между водородом и кислородом карбоксильной группы (−COOH) карбоновой кислоты является сильно полярной, вследствие чего эти соединения способны легко диссоциировать и проявляют кислотные свойства.

В результате диссоциации уксусной кислоты образуется ацетат-ион CH3COO− и протон H+. Уксусная кислота является слабой одноосновной кислотой со значением pKa в водном растворе равным 4,75. Раствор с концентрацией 1,0 M (приблизительная концентрация пищевого уксуса) имеет pH 2,4, что соответствует степени диссоциации 0,4 %.

На слабой диссоциации уксусной кислоты в водном растворе основана качественная реакция на наличие солей уксусной кислоты: к раствору добавляется сильная кислота (например, серная), если появляется запах уксусной кислоты, значит, соль уксусной кислоты в растворе присутствует (кислотные остатки уксусной кислоты, образовавшиеся из соли, связались с катионами водорода от сильной кислоты и получилось большое количество молекул уксусной кислоты).

Исследования показывают, что в кристаллическом состоянии молекулы образуют димеры, связанные водородными связями.

Уксусная кислота способна взаимодействовать с активными металлами. При этом выделяется водород и образуются соли — ацетаты:

Mg + 2CH3COOH → (CH3COO)2Mg + H2↑

Уксусная кислота может хлорироваться действием газообразного хлора. При этом образуется хлоруксусная кислота:

CH3COOH + Cl2 → CH2ClCOOH + HCl

[attention type=yellow][attention type=yellow]

Этим путём могут быть получены также дихлоруксусная (CHCl2COOH) и трихлоруксусная (CCl3COOH) кислоты.

[/attention][/attention]

Уксусная кислота может быть восстановлена до этанола действием алюмогидрида лития. Она также может быть превращена в хлорангидрид действием тионилхлорида. Натриевая соль уксусной кислоты декарбоксилируется при нагревании со щелочью, что приводит к образованию метана и карбоната натрия.

Применение

Уксусную кислоту, концентрация которой близка к 100 %, называют ледяной. 70—80 % водный раствор уксусной кислоты называют уксусной эссенцией, а 3—15 % — уксусом.

Водные растворы уксусной кислоты используются в пищевой промышленности (пищевая добавка E260) и бытовой кулинарии, а также в консервировании и для избавления от накипи.

Однако количество уксусной кислоты, используемой в качестве уксуса, очень мало, по сравнению с количеством уксусной кислоты, используемой в крупнотоннажном химическом производстве.

Уксусную кислоту применяют для получения лекарственных и душистых веществ, как растворитель (например, в производстве ацетилцеллюлозы, ацетона). Она используется в книгопечатании и крашении.

Уксусная кислота используется как реакционная среда для проведения окисления различных органических веществ. В лабораторных условиях это, например, окисление органических сульфидов пероксидом водорода, в промышленности — окисление пара-ксилола кислородом воздуха в терефталевую кислоту.

Поскольку пары уксусной кислоты обладают резким раздражающим запахом, возможно её применение в медицинских целях в качестве замены нашатырного спирта для выведения больного из обморочного состояния.

Безопасность

Безводная уксусная кислота — едкое вещество. Пары уксусной кислоты раздражают слизистые оболочки верхних дыхательных путей. Порог восприятия запаха уксусной кислоты в воздухе находится в районе 0,4 мг/л. Предельно допустимая концентрация в атмосферном воздухе составляет 0,06 мг/м³, в воздухе рабочих помещений — 5 мг/м³.

Действие уксусной кислоты на биологические ткани зависит от степени её разбавления водой. Опасными считаются растворы, в которых концентрация кислоты превышает 30 %. Концентрированная уксусная кислота способна вызывать химические ожоги, инициирующие развитие коагуляционных некрозов прилегающих тканей различной протяженности и глубины.

Токсикологические свойства уксусной кислоты не зависят от способа, которым она была получена. Смертельная доза составляет примерно 20 мл.

Последствиями приёма концентрированной уксусной кислоты являются тяжёлый ожог слизистой оболочки полости рта, глотки, пищевода и желудка; последствия всасывания уксусной эссенции — ацидоз, гемолиз, гемоглобинурия, нарушение свёртываемости крови, сопровождающееся тяжёлыми желудочно-кишечными кровотечениями. Характерно значительное сгущение крови из-за потери плазмы через обожжённую слизистую оболочку, что может вызвать шок. К опасным осложнениям отравления уксусной эссенцией относятся острая почечная недостаточность и токсическая дистрофия печени.

При приёме уксусной кислоты внутрь следует выпить большое количество жидкости. Вызов рвоты является крайне опасным, так как вторичное прохождение кислоты по пищеводу усугубит ожог. Показано промывание желудка через зонд. Необходима немедленная госпитализация.

Источник: https://chem.ru/uksusnaja-kislota.html

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: