Особенности строения генома бактерий

Содержание
  1. Сходства и различия эукариот, архей, бактерий
  2. Группы эукариот
  3. Сходства и различия в строении клеток прокариот и эукариот
  4. Сходства и различия в молекулярных процессах, протекающих в клетках прокариот и эукариот
  5. Геном бактерий и секреты генной инженерии
  6. Происхождение термина
  7. Структурные особенности наследственной конституции прокариотов
  8. Особенности строения
  9. Строение хромосомы прокариотов
  10. Внехромосомные элементы наследственности прокариотов
  11. Воздействие окружающей среды
  12. Генетические мутации и рекомбинации у микроорганизмов
  13. Передача генетического материала между организмами
  14. Вопросы, задачи и методы биотехнологий
  15. Способы изменения генома
  16. Геномы человека и бактерий имеют больше общего, чем мы думали (Часть 1) ✎ pangenes.ru
  17. Продолжение статьи:
  18. Бактерии — общая характеристика. Классификация, строение, питание и роль бактерий в природе
  19. Места обитания
  20. Размножение
  21. Классификация
  22. Значение в природе и для человека

Сходства и различия эукариот, архей, бактерий

Особенности строения генома бактерий

Автор статьи Лукьянова А.А.

На протяжении многих лет с момента открытия существования микроорганизмов не было однозначного понимания их места в живой природе.

Их относили к растениям (отсюда устаревший ныне термин «микрофлора[1]»), затем разделяли на группы среди растений и животных.

Сейчас очевидно, что термин «микроорганизм» не имеет систематического смысла, то есть говорит исключительно о микроскопическом размере объекта.

Группы эукариот

В настоящее время микроорганизмы разделяют на две большие группы, принципиально отличающиеся строением клетки – эукариоты и прокариоты (рис. 1). Группа эукариот включает в себя микроскопические водоросли, простейших и микроскопические грибы, такие как дрожжи и плесневые грибы.

К прокариотам до 80-х годов относили исключительно бактерий, однако группой исследователей под руководством Карла Вёзе в ходе анализа последовательностей 16S рРНК, было обнаружено, что архебактерии (археи) по своему происхождению являются самостоятельной группой, что подтверждается рядом отличий в их строении и метаболизме: одни черты роднят их с бактериями, другие – с эукариотами, а некоторые являются совершенно уникальными. В частности, первые открытые археи отличаются своей удивительной способностью обитать в экстремальных местах обитания: при высоких температурах, давлении, сильнокислых или сильнощелочшых условиях среды. Например, большинство гипертермофильных архей растут при температуре 80 ℃, а Methanopyrus kandleri – при 122 ℃.  Другой пример: рекордсмен среди устойчивых к кислой среде архей растет в условиях, эквивалентных 1,2 М серной кислоте. Для сравнения – содержание соляной кислоты в желудочном соке в норме составляет 0,14 – 0,16  М.

Рисунок 1. Группы микроорганизмов

Сходства и различия в строении клеток прокариот и эукариот

Для существования клеток любого типа, и прокариотических, и эукариотических, необходимо наличие цитоплазматической мембраны, отделяющей клетку от внешней среды; цитоплазмы, заполняющей клетку, а также генетического аппарата и рибосом, позволяющих хранить и реализовывать генетическую информацию. Однако, строение мембраны и рибосом, а также организация генетического материала для этих групп могут различаться (рис.2)

Основное различие прокариот и эукариот состоит в том, что в клетках прокариот генетический материал располагается непосредственно в цитоплазме и представлен нуклеоидом, содержащим чаще всего замкнутую в кольцо молекулу ДНК. У эукариот генетический материал отделен ядерной оболочкой и, соответственно, заключен в ядре. Он представлен линейными молекулами ДНК, «упакованными» в хромосомы.

И у прокариот, и у эукариот есть рибосомы, необходимые для синтеза белка, но рибосомы прокариот меньше эукариотических. Рибосомы бактерий состоят их трех, а не четырех молекул рРНК.

[attention type=yellow]

Рибосомы архей по некоторым признакам похожи на бактериальные, а по некоторым – на эукариотические.

[/attention]

Например, на рибосомы архей не действует антибиотик хлорамфеникол, связывающий рибосомы бактерий, в то время как дифтерийный токсин, останавливающий биосинтез белка у эукариот, действует и на архей.

Кроме рибосом внутри прокариотической клетки нет других органелл и мембранных структур, в то время как эукариотические клетки содержат эндоплазматическую сеть, аппарат Гольджи, митохондрии и другие органеллы. Внутри клеток прокариот могут быть газовые пузырьки или другие включения, окруженные белковой оболочкой.

Рисунок 2. Строение клеток прокариот (на примере бактерий) и эукариот

Такое увеличение площади мембраны необходимо в связи с тем, что энергетические процессы, такие как дыхание и фотосинтез, происходящие у эукариот на внутренних мембранах митохондрий и хлоропластов соответственно, у прокариот происходит непосредственно на мембране клетки.

Цитоскелет прокариот не включает в себя характерных для эукариотической клетки элементов (микротрубочек, актиновых филаментов, микрофиламентов) и образован другими белками. Прокариоты не способны к эндоцитозу и амебоидному движению.

Клеточные покровы прокариот и эукариот так же существенно отличаются. Клетки бактерий и эукариот покрыты цитоплазматической мембраной, состоящей из двойного слоя фосфолипидов, в которых жирные кислоты связаны с молекулой глицерина сложноэфирной связью.

Мембранные липиды архей вместо жирных кислот содержат изопреновые цепочки, соединенные с глицерином простой эфирной связью (рис. 3). Липиды такой мембраны зачастую объединяются в один слой с двумя гидрофильными головками и одной гидрофобной «сшивкой» из двух хвостов.

Это делает мембрану более устойчивой к экстремальным условиям, в которых обитают некоторые археи.

Рисунок 3. Строение цитоплазматической мембраны бактерий, эукариот и архей

Клеточная стенка бактерий состоит из пептидогликана (муреина), которого нет ни у архей, ни у эукариот. Клетки архей чаще всего покрыты белковым S-слоем, защищающим от воздействия стрессовых условий, а в тех случаях, когда клеточная стенка все-таки присутствует, в ее состав входит похожее по структуре вещество – псевдомуреин.

Отличается и строение жгутиков. Бактериальные жгутики образованы белком флагеллином который, закручиваясь в спираль, формирует полую внутри нить жгутика.

Жгутики архей похожи на бактериальные: они приводят клетку в движение, вращаясь по тому же механизму, но они не имеют полости внутри и образованы гликопротеинами.

[attention type=red]

Жгутики эукариот в свою очередь состоят из десяти пар микротрубочек, где одна из пар центральная, а еще девять окружают ее.  

[/attention]

Клетки бактерий, архей и эукариот отличаются не только чертами своего строения, существует еще рад биохимических и молекулярных признаков, на которые стоит обратить внимание. Кратко все признаки для каждой группы изложены в таблице 1.

Таблица 1. Сходства и различия в строении клеток бактерий, археи и эукариот

Сходства и различия в молекулярных процессах, протекающих в клетках прокариот и эукариот

Различия в организации генетического материала для этих групп не ограничиваются лишь его расположением и тем, замкнута ли ДНК в кольцо. Процессы транскрипции и трансляции у каждой группы имеют свои особенности. Например, для поддержания структуры ДНК и регуляции экспрессии генов в клетках эукариот и архей есть специальные белки – гистоны, которых нет у бактерий.

Гены бактерий собраны в опероны. Это означает, что несколько генов находятся друг за другом и имеют общий промотор (место старта трансляции), таким образом мРНК получается полицистронная, то есть кодирующая несколько белков. Эта особенность характерна и для архей.

У эукариот, наоборот, для каждого гена есть свой промотор. В то же время, общим для эукариот и бактерий является наличие в генах некодирующих участков – интронов, которых нет у бактерий.

Причем структура РНК-полимеразы, компонентов транскрипционного комплекса, а также все дальнейшие процессы транскрипции и дальнейшей обработки (процессинга) мРНК у эукариот и архей очень схожи, в то время, как у бактерий существенно отличаются.

Например, транскрипция и трансляция, на матрице синтезируемой мРНК, у бактерий идут одновременно и для старта синтеза белка не требуется не требуется процессинга мРНК. Причем, трансляция бактерий начинается не с метионина, как у эукариот (и архей), а с формилметионина.

Помимо особенностей, связанных с транскрипцией и трансляцией, для прокариот, в отличие от эукариот, характерно большое разнообразие метаболических особенностей, таких как способность к метаногенезу архей, хемолитоавтотрофность, способность к фиксации азота и способность к аноксигенному фотосинтезу.

Исходя из этого, становится видно, что все три выделенные на настоящий момент домена – бактерии, археи и эукариоты существенно отличаются друг от друга.

[attention type=green]

Причем археи, хоть и являются прокариотами и несут в своем строении типичные прокариотические черты – отсутствие ядра и мембранных органоидов в цитоплазме, кольцевая ДНК, кольцевая хромосома и многое другое, тем не менее в некоторых чертах похожи на эукариот.

[/attention]

Говоря о родстве между этими тремя группами, стоит отметить, что согласно доминирующей в настоящее время гипотезе, считается, что не смотря на то, что и бактерии, и археи относятся к прокариотам, последние все же более близки к эукариотам.

Таким образом, в ходе эволюции сперва произошло разделение на группу бактерий и некого общего предка, от которого в дальнейшем произошли археи и эукариоты

[1] В современной науке принято использовать термин «микробиота» [2] S – константа седиментации. Скорость осаждения частицы при ультрацентрифугировании. В данном контексте ее используют, чтобы охарактеризовать размер частицы.

Источник: https://biocpm.ru/shodstva-i-razlichiya-eukariot-arhey-bakteriy

Геном бактерий и секреты генной инженерии

Особенности строения генома бактерий

Термин «геном бактерий» приобрел современное значение не так давно. Первоначально он понимался как генетическая характеристика конкретного вида микроорганизма в общем.

Развитие микробиологии и, в частности, молекулярной генетики, внесло свои коррективы, и сегодня этим термином обозначают наследственную конституцию клетки, куда учитывают и различные факультативные элементы, располагающиеся вне хромосомы.

Происхождение термина

Впервые термин «геном» появился в начале 20 века в работах немецкого биолога Ганса Винклера, где обозначал объединение всех генов растительного гибрида.

Геном – слово сложносоставное и образовано из термина «ген» и собирательного суффикса «-ом», обозначающего слияние частей в целое. В таком аспекте термин «геном» следует понимать как объединение имеющихся генов в единое целое.

Структурные особенности наследственной конституции прокариотов

Бактериальный геном прокариотов представлен генетическими элементами, обеспечивающими репликативную функцию – репликонами. Для бактериальной клетки это – хромосома и плазмиды. Чаще всего они имеют кольцевую форму, хотя возможно и линейное строение молекул-носителей ДНК.

В качестве примера можно взять геном спирохеты, вызывающей клещевой боррелиоз. Геном спирохеты Borrelia burgdorferi представлен линейной хромосомой и плазмидами, часть которых также линейна по строению.

Геномы эукариотов и бактерий значительно различаются по количеству генов и, соответственно, размеру – от нескольких тысяч у бактерий до миллиардов пар оснований у эукариотов, в том числе человека. Геномы вирусов и бактерий представляют класс компактных геномов, не превышающих нескольких миллионов пар оснований.

Особенности строения

Геном прокариотов представляет собой бактериальную хромосому и плазмиды, содержащих наследственную информацию, которая хранится как определенная очередность нуклеотидов ДНК. Это, в свою очередь, определяет порядок расположения аминокислот в белке бактериальной клетки.

Каждому белку бактериальной клетки соответствует участок ДНК, характеризующийся конечным числом и порядком расположения нуклеотидов.

Строение хромосомы прокариотов

Хромосома бактериальной клетки – это одна двухцепочная закольцованная молекула ДНК, строение которой определяется большим количеством (до 4 тысяч) генов. Она содержит гаплоидный генетический набор – имеет одну копию набора непарных хромосом, которая удваивается только в процессе деления клетки.

В процессе развития микробиологии было определено, что гаплоидный набор не является для бактерий единственно возможным. Изучая геномы бактерий и вирусов, ученые обнаружили бактерии, в геноме которых содержится диплоидный (парный) набор хромосом (Brucella melitensis) и даже хромосома линейной формы (Streptomyces ambofaciens).

В среднем, наследственный материал бактериальной клетки включает в себя до 5 млн. пар оснований, а геном человека, для сравнения, состоит из 2,9 млрд. пар оснований. Если развернуть бактериальную хромосому в прямую нитку, ее длина составит 1 мм.

Внехромосомные элементы наследственности прокариотов

Помимо хромосом, в геном бактерий входят плазмиды и мобильные генетические элементы:

  • транспозоны – нуклеотидные последовательности, несущие генетическую информацию; способны перемещаться с хромосомы на плазмиду;
  • is-последовательности – небольшие по размеру и наиболее простые элементы, по частоте встраивания сопоставимы со спонтанной мутацией, осуществляют горизонтальный перенос.

Эти элементы клетки прокариотов также представлены молекулами ДНК со своими специфическими признаками и являются частью наследственного материала микроба.

Микробиология, изучая геном клетки бактерии, установила, что эти внехромосомные факторы наследования не являются жизненно необходимыми для микроорганизмов, так как не содержат информацию о синтезе ферментов, задействованных в метаболизме бактерии.

Благодаря информации, которую несут плазмиды и мигрирующие генетические элементы, микробы обладают определенными свойствами. К примеру, антибиотической резистентностью, способностью к синтезу гемолизина и бактериоцина.

В отличие от плазмид, другие внехромосомные элементы всегда связаны с хромосомой и не способны к самостоятельному воспроизведению.

Плазмиды бактериальной клетки выполняют две функции:

  • регуляторную – компенсация нарушений ДНК хромосомы за счет плазмидного репликона;
  • кодирующую – внесение и сохранение в клетке бактерии новой информации, что проявляется в приобретенных признаках.

Свойства любого организма, будь то человек или бактерия, определяются совокупностью генов – генотипом. В случае же бактерий значение терминов «генотип» и «геном» фактически идентично.

Если геном – это совокупность наследственного материала клетки, то генотипом называют генетический материал – результат объединения геномов родительских половых клеток. Клетка человека, к примеру, будет обладать двойным генетическим набором, полученным от родителей.

Бактериальная клетка размножается прямым делением, и геном дочерней и материнской клетки изначально идентичны. Поэтому и понятия «генотип» и «геном» для бактериальной клетки практически синонимы.

Воздействие окружающей среды

Результатом взаимодействие генотипа с окружающей средой является фенотип, который представляет собой модификационные изменения под конкретные условия среды обитания. При этом геном бактерии не изменяется.

https://www.youtube.com/watch?v=KKK-ueKi_M0

Хотя фенотип зависит от конкретных внешних условий, все изменения контролируются геномом бактерии, так как возможные изменения определяются набором имеющихся наследственных материалов. Способность изменяться является инструментом эволюции, позволяющим решать вопросы естественного и искусственного отбора.

Изменчивость фенотипа микроорганизма в зависимости от механизма воздействия, может быть:

  • ненаследственной – с изменениями только фенотипа микроорганизма;
  • наследственной – изменения происходят на уровне генотипа.

В микробиологии основными видами ненаследственных изменений фенотипа считаются:

  • адаптация – ненаследственная приспособленческая реакция клетки;
  • модификация – изменение внешних признаков бактерий (размер, форма или цвет колоний) под воздействием окружающих условий.

Модификация как изменение фенотипа представляет собой результат воздействия фактора окружающей среду. Основные характеристики модификационной изменчивости генома микроорганизмов:

  • обратимость изменений фенотипа (касается как человека, так и бактерии) – изменение условий жизнедеятельности приведет к исчезновению существующей модификации и замене их на другие;
  • изменения носят не индивидуальный, а групповой характер;
  • изменения фенотипа не наследуются;
  • модификация фенотипа происходит при каждом изменении условий жизни, при этом генотип остается неизменным.

Генетические мутации и рекомбинации у микроорганизмов

Генотипическая (наследственная) изменчивость прокариотов может быть связана с мутациями – изменениями расположения нуклеотидов в ДНК, их частичной или полной утратой. Следствием мутации является перестройка всех генов генома, что внешне проявляется в появлении или исчезновении характерных признаков.

Рекомбинация генома у всех организмов, от прокариотов до человека, представляет собой изменение местоположения отдельных генов в пределах хромосомы либо в результате проникновения в клетку донорской ДНК.

Рекомбинации прокариотов подразделяются на:

  • законные – осуществляются только при наличии протяженных участков ДНК в рекомбинируемой клетке бактерии;
  • незаконные – не требуют наличия протяженного участка ДНК, осуществляются при помощи is-элементов, имеющих липкие концы, что позволяет быстро встраиваться в клетку микроорганизма.

Для осуществления генетических рекомбинаций в клетке прокариота требуется участие ряда ферментов.

Передача генетического материала между организмами

Существуют пути передачи наследственного материала между бактериями. К ним относятся:

  • трансформация – прямая передача фрагмента ДНК донора реципиенту; характерна внутривидовая трансформация, межвидовая реализуется крайне редко;
  • трансдукция – передача наследственного материала между бактериями посредством фагов;
  • конъюгация – перенос генного материала бактериальной клеткой-донором, несущей F-плазмиду (половой фактор) реципиенту.

Передача наследственного материала между организмами, не состоящими в цепочке «предок – потомок», называют горизонтальным переносом, а наследование генетического материала от своего предка – вертикальным переносом.

Явление горизонтального переноса генетического материала было впервые описано в 1959 году японскими микробиологами на примере передачи невосприимчивости к антибиотикам различных бактерий. Дальнейшие исследования показали, что горизонтальный перенос наследственного материала является характерной чертой и важным эволюционным механизмом прокариотов и появился он вместе с самими бактериями.

Если генетику интересует вертикальный перенос, то генная инженерия занимается вопросами искусственного горизонтального переноса.

Вопросы, задачи и методы биотехнологий

Биотехнологии предназначены для получения заданных свойств у генетически измененного организма. Основным инструментом биотехнологий является генная инженерия. Она позволяет, используя методы молекулярного клонирования и горизонтального переноса, вносить изменения напрямую в генный аппарат клетки.

Способы изменения генома

Для того, чтобы микроорганизм приобрел нетипичные для него свойства, необходимо изменить его геном. Для этого существуют два пути:

  • мутация – воздействие на клетку мутагенов (химические яды или излучение) приводит к неконтролируемым генетическим мутациям;
  • прямое введение в геном нуклеотида с необходимыми свойствами.

Для генной инженерии технологическим решением проблемы введения нужного нуклеотида в микроорганизм стала бактериальная трансформация. Происходит внедрение донорской плазмиды в бактерию-реципиент, что является типичным горизонтальным переносом наследственной информации.

Плазмидные технологии решили вопрос введения искусственных генов в клетку микроорганизма. Одним из примеров успехов генной инженерии является производство инсулина человека, при котором используются генетически модифицированные бактерии.

Для изучения бактерий, геном которых подвергся изменению методами генной инженерии, используют следующие техники горизонтального переноса генной информации:

  • нокаут гена – исследуемый участок ДНК удаляют или повреждают, после чего отслеживают результаты мутации;
  • искусственная экспрессия – в клетку вводят новый ген, результаты мутации отслеживаются;

Для отслеживания продукта модификации генная инженерия использует метод визуализации. Для этого применяется флуоресцентный белок, что позволяет отслеживать процесс.

Другим способом генной инженерии является добавление к гену небольших по размеру олигопептидов (репортерный элемент), которые выявляются специфическими антителами.

Генная инженерия воздействует не только на строение молекулы ДНК. Она изучает экспрессию гена, которая напрямую связана с промотором (небольшой участок ДНК перед кодирующей областью) и фактором транскрипции (перенос наследственной информации).

[attention type=yellow]

Техниками генной инженерии в будущем будет возможно воздействовать не только на геном прокариотов, но и на геном человека. Методы генотерапии по воздействию на геном человека еще разрабатываются и проверяются на приматах. Методы горизонтального переноса наследственной информации помогут решить вопросы с генетическими заболеваниями.

[/attention]

Сегодня геном бактерии является удобным объектом генетических исследований. У растений, животных и человека совокупность всех наследственных факторов организма – геном – будет определять характерные признаки (генотип) клетки, а результат взаимодействия с окружающей средой – фенотип.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Источник: https://probakterii.ru/prokaryotes/organelles/genom-bakterij.html

Геномы человека и бактерий имеют больше общего, чем мы думали (Часть 1) ✎ pangenes.ru

Особенности строения генома бактерий

Генетика 3 октября 2018 г., 5:29

Прежде чем мы поняли, что ДНК – это генетический код, ученые знали, что бактерии обмениваются информацией между клетками.

В 1928 году, за 25 лет до того, как была расшифрована структура ДНК, британский бактериолог Фредерик Гриффит продемонстрировал, что живые, невирулентные бактерии могут трансформироваться в вирулентные микробы после инкубации с термически убитым вирулентным штаммом.

Пятнадцать лет спустя трое ученых из Института медицинских исследований Рокфеллера (ныне Университет Рокфеллера), Освальд Эйвери, Колин Маклауд и МаклинМаккарти продемонстрировали, что эта трансформация была под контролем ДНК. Даже мертвые бактерии, казалось, могли делиться своими генами.

Этот процесс разделения ДНК, известный как горизонтальный или латеральный перенос генов (ЛПГ), теперь понимается как прямое перемещение ДНК между двумя организмами.

  • Почти все бактериальные геномы демонстрируют доказательства прошлых событий ЛПГ, и это явление, как известно, оказывает глубокое влияние на микробную биологию, от распространения генов устойчивости к антибиотикам до создания новых путей для деградирующих химических веществ.
  • Но горизонтальный перенос не ограничивается бактериями. Ученые теперь признают, что микробы передают ДНК растениям, грибам и животным, которых они заражают или в которых проживают, и, наоборот, в бактериальных геномах были обнаружены длинные перемежающиеся элементы (линии) человека.
  • Кроме того, исследователи доказали эффект горизонтального переноса генов от грибов к насекомым и от водорослей к морским слизням. Есть основания полагать, что любые две основные группы организмов, включая людей, могут обмениваться своими генетическими кодами.

Люди уже давно заинтригованы перспективой наличия чужеродной ДНК в наших собственных геномах.

В генах человека содержатся данные о полезных ЛПГ от бактерий в недавнем прошлом, и есть доказательства того, что передача может происходить регулярно между чужеродными бактериями и соматическими клетками организма. Как часто происходит перенос генов бактерий животных, неясно, как и механизмы этих передач. Но если они вызывают вредные мутации, они могут быть непризнанной причиной болезней.

Бактерии – это беспорядочная связка генов. У них отсутствует половое размножение, при этом, они являются одними из самых генетически разнообразных видов, потому что постоянно обмениваются участками своего генетического кода через ЛПГ.

  • Их разнообразие позволило им адаптироваться ко всем экологическим нишам на планете, от глубоководных гидротермальных источников до замерзших озер Антарктиды, от расщелин скал до нашего кишечника.
  • Латеральный перенос генов между бактериями и выполняет преобразование свободной ДНК (генетический материал выбрасывается в окружающую среду бактериями и поглощается живыми микроорганизмами, как в эксперименте Гриффита), трансдукцию вирусов и прямым переносом из клетки в клетку через конъюгацию.

Обмен генами: горизонтальный или латеральный перенос генов (ЛПГ) является частым явлением среди бактерий, и исследования за последнее десятилетие показали, что микробы также могут передавать свою ДНК многоклеточным хозяевам. Одним из наиболее хорошо изученных примеров ЛПГ между микробом и животным является перенос ДНК от внутриклеточного эндосимбионта Wolbachia к его хозяину-дрозофиле.

Механизмы латерального перехода от бактерий к другим организмам менее ясны, но, вероятно, схожи.

Секреторная система типа IV под названием T4SS, представляет шприцеподобный белок, который известен способностью вводить различные молекулы от бактерии в клетки хозяина через межклеточные контакты.

  • Это важный посредник ЛПГ между агробактериями и растениями в дикой природе, и в лабораториях, где он может быть использован для создания генетически модифицированных культур и даже может осуществлять перенос между почвенными бактериями и клетками человека.

Используя секвенирование всего генома, исследователи обнаружили, что геномы многочисленных насекомых и червей-нематод иногда содержат ДНК микробов, населяющих или заражающих их тела.

  • Некоторые виды содержат огромные массивы ДНК бактерии Wolbachia endosymbiont, вплоть до нескольких полных копий генома бактерий.

Эти большие переносы генной информации могут быть почти идентичны последовательности генома эндосимбионта, что позволяет предположить, что они произошли совсем недавно.

Некоторые виды насекомых несут остатки гораздо более старых переносов генов, которые были полезны для видов-реципиентов и были отобраны в течение долгого времени.

  • Например, кофейный жук, который является опасным вредителем плодов и зёрен кофейного дерева, благодаря наличию бактериального гена, синтезирующего фермент маннаназу, способен употреблять ягоды кофе. Совмещенные бактериальные гены маннаназы могут быть причиной гибели урожая, вызванной заражением коричневым мраморным щитником.
  • А также тли синтезируют свои собственные каротиноиды с использованием генов, переносимых из грибов, для получения яркого внешнего вида, предназначенного для защиты.

Поскольку в литературе появляется все больше примеров ЛПГ среди различных организмов, вполне естественно необходимо сосредоточиться на изучении этого явления в организме человека.

Если это происходит у нас, то как, и если да, то как часто, и каковы последствия?

Продолжение статьи:

  • Геномы человека и бактерий имеют больше общего, чем мы думали (Часть 2)

pangenes.ru © 2020

Источник: https://pangenes.ru/post/genomy-cheloveka-i-bakteriy-imeyut-bolshe-obshchego-chem-my-dumali-chast-1.html

Бактерии — общая характеристика. Классификация, строение, питание и роль бактерий в природе

Особенности строения генома бактерий

Бактерии это самый древний организм на земле, а также самый простой в своем строении. Он состоит всего из одной клетки, которую можно увидеть и изучить только под микроскопом. Характерным признаком бактерий является отсутствие ядра, вот почему бактерии относят к прокариотам.

Некоторые виды образовывают небольшие группы клеток, такие скопления могут быть окружены капсулой (чехлом). Размер, форма и цвет бактерии сильно зависит от окружающей среды.

По форме бактерии различаются на: палочковидные (бациллы), сферические (кокки) и извитые (спириллы). Встречаются и видоизмененные – кубические, С-образные, звездчатые. Их размеры колеблются от 1 до 10мкм. Отдельные виды бактерий могут активно передвигаться при помощи жгутиков. Последние иногда превышают размер самой бактерии в два раза.

Виды форм бактерий

Для движения бактерии используют жгутики, количество которых бывает различное – один, пара, пучок жгутиков. Расположение жгутиков также бывает разным – с одной стороны клетки, по бокам или равномерно распределены по всей плоскости.

Также одним из способов передвижения считается скольжение благодаря слизи, которой покрыт прокариот. У большинства внутри цитоплазмы есть вакуоли.

Регулировка ёмкости газа в вакуолях помогает им двигаться в жидкости вверх или вниз, а также перемещаться по воздушных каналах почвы.

Ученые открыли более 10 тысяч разновидностей бактерий, но по предположениям научных исследователей в мире существует их более миллиона видов. Общая характеристика бактерий дает возможность определиться с их ролью в биосфере, а также изучить строение, виды и классификацию царства бактерий.

Места обитания

Простота строения и быстрота адаптации к окружающим условиям помогла бактериям распространиться в широком диапазоне нашей планеты. Они существуют везде: вода, почва, воздух, живые организмы – всё это максимально приемлемое место обитания для прокариотов.

Бактерии находили как на южном полюсе, так и в гейзерах. Они есть на океанском дне, а также в верхних слоях воздушной оболочки Земли. Бактерии живут везде, но их количество зависит от благоприятных условий. К примеру, большая численность видов бактерий проживает в открытых водоемах, а также почве.

Размножение

В условиях, благоприятных для размножения, оно осуществляется почкованием или вегетативно. Бесполое размножение происходит в такой последовательности:

  1. Клетка бактерии достигает максимального объема и содержит необходимый запас питательных веществ.
  2. Клетка удлиняется, посередине появляется перегородка.
  3. Внутри клетки происходит дележ нуклеотида.
  4. ДНК основная и отделенная расходятся.
  5. Клетка делится пополам.
  6. Остаточное формирование дочерних клеток.

При таком способе размножения нету обмена генетической информацией, поэтому все дочерние клетки будут точной копией материнской.

Процесс размножения бактерий в неблагоприятных условиях более интересен. О способности полового размножения бактерий ученые узнали сравнительно недавно – в 1946 году. У бактерий нет разделения на женские и половые клетки.

Но ДНК у них встречается разнополое. Две такие клетки при приближении друг к другу образовывают канал для передачи ДНК, происходит обмен участками – рекомбинация.

Процесс довольно длительный, результатом которого являются две совершенно новые особи.

Большинство бактерий очень сложно увидеть под микроскопом, так как они не имеют своей окраски.

Немногие разновидности имеют пурпурный или зеленый окрас, благодаря содержанию в них бактериохлорофилла и бактериопурпурина.

Хотя если рассматривать некоторые колонии бактерий, становится ясно, что они выделяют окрашиваемые вещества в среду обитания и приобретают яркую окраску. Для того, чтобы подробней изучать прокариотов, их окрашивают.

Фотографии бактерий под микроскопом

Классификация

Классификация бактерий может быть основана на таких показателях, как:

  • Форма
  • способ передвижения;
  • способ получения энергии;
  • продукты жизнедеятельности;
  • степень опасности.

По способу питания бывают бактерии автотрофы или гетеротрофы. Автотрофные бактерии пребывают в основном в почве. Гетеротрофы различают такие, как: симбионты, паразиты и сапрофиты.

Бактерии симбионты живут в содружестве с иными организмами.

Бактерии паразиты ничего не производят, поэтому питаются тем, что произвел организм хозяина, либо питается тканями другого организма.

Бактерии сапрофиты проживают на уже отмерших организмах, продуктах и органических отходах. Они способствуют процессам гниения и брожения.

Гниение очищает природу от трупов и других отходов органического происхождения. Без процесса гниения не было бы круговорота веществ в природе. Так в чем же состоит роль бактерий в круговороте веществ?

Бактерии гниения — это помощник в процессе расщепления белковых соединений, а также жиров и других соединений, содержащих в себе азот.

[attention type=red]

Проведя сложную химическую реакцию, они разрывают связи между молекулами органических организмов и захватывают молекулы белка, аминокислот.

[/attention]

Расщепляясь, молекулы высвобождают аммиак, сероводород и другие вредные вещества. Они ядовиты и могут вызывать отравление у людей и животных.

Бактерии гниения быстро размножаются в благоприятных для них условиях. Так как это не только полезные бактерии, но и вредные, то чтобы не допустить преждевременного гниения у продуктов, люди научились их обрабатывать: сушить, мариновать, солить, коптить. Все эти способы обработки убивают бактерии и не дают им размножаться.

Бактерии брожения при помощи ферментов способны расщеплять углеводы. Эту способность люди заметили еще в древние времена и используют такие бактерии для изготовления молочнокислых продуктов, уксусов, а также других продуктов питания до сих пор.

Кроме полезных, существуют также и патогенные бактерии. Их жизнедеятельность базируется на паразитизме в организме животных, растений и даже человека. Они вызывают серьезные инфекционные болезни, примером может служить туберкулез, сифилис, язву (сибирскую и язву желудка), дифтерию, чуму и многие другие не менее тяжелые заболевания.

Бактерии, трудясь в совокупности с другими организмами, делают очень важную химическую работу. Очень важно знать какие есть виды бактерий и какую пользу или вред приносят для природы.

Значение в природе и для человека

Выше уже отмечалось большое значение многих видов бактерий (при процессах гниения и различных типах брожения), т.е. выполнение санитарной роли на Земле.

Бактерии также играют огромную роль в круговороте углерода, кислорода, водорода, азота, фосфора, серы, кальция и других элементов.

Многие виды бактерий способствуют активной фиксации атмосферного азота и переводят его в органическую форму, способствуя повышению плодородия почв.

Особо важное значение имеют те бактерии, которые разлагают целлюлозу, являющиеся основным источником углерода для жизнедеятельности почвенных микроорганизмов.

[attention type=green]

Сульфатредуцирующие бактерии участвуют в образовании нефти и сероводорода в лечебных грязях, почвах и морях. Так, насыщенный сероводородом слой воды в Черном море является результатом жизнедеятельности сульфатредуцирующих бактерий.

[/attention]

Деятельность этих бактерий в почвах приводит к образованию соды и содового засоления почвы. Сульфатредуцирующие бактерии переводят питательные вещества в почвах рисовых плантаций в такую форму, которая становится доступной для корней этой культуры.

Эти бактерии могут вызывать коррозию металлических подземных и подводных сооружений.

Благодаря жизнедеятельности бактерий почва освобождается от многих продуктов и вредных организмов и насыщается ценными питательными веществами. Бактерицидные препараты успешно используются для борьбы с многими видами насекомых-вредителей (кукурузным мотыльком и др.).

Многие виды бактерий используются в различных отраслях промышленности для получения ацетона, этилового и бутилового спиртов, уксусной кислоты, ферментов, гормонов, витаминов, антибиотиков, белково-витаминных препаратов и т.д.

Без бактерий невозможны процессы при дублении кожи, сушке листьев табака, выработке шелка, каучука, обработке какао, кофе, мочении конопли, льна и других лубоволокнистых растений, квашении капусты, очистке сточных вод, выщелачивании металлов и т.д.

Оцените, пожалуйста, статью. Мы старались:) (20 4,80 из 5)
Загрузка…

Источник: https://animals-world.ru/bakterii-obshhaya-xarakteristika/

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: