Парциальное давление паров воды

Содержание
  1. Насыщенный пар
  2. Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха
  3. Испарение и конденсация
  4. Динамическое равновесие
  5. Свойства насыщенного пара
  6. Влажность воздуха
  7. Влагонакопление, пленки, точка росы… Часть 1
  8. Как все это работает, откуда пар в воздухе
  9. А если у меня на полу нет лужи и комната не герметична (форточка открыта) — откуда в ней вообще возьмется пар?
  10. ладно, пар в воздухе есть. а с чего ему идти в стену, если есть форточка, откуда проблема влагонакопления ограждений?
  11. диффузия газов
  12. Парциальное давление
  13. Влажность! Всюду водяные пары
  14. Теория
  15. Туман
  16. Задачи
  17. Свойства водяного пара: температура, тройная точка, упругость, термодинамическое равновесие, плотность
  18. Вода превращается в пар при температуре
  19. Насыщенный водяной пар
  20. Давление насыщенного водяного пара
  21. Плотность насыщенного водяного пара
  22. Влажный воздух. Параметры влажного воздуха
  23. Влажный воздух
  24. I-d диаграмма влажного воздуха
  25. Параметры влажного воздуха
  26. Влагосодержание
  27. Парциальное давление водяного пара
  28. Относительная влажность
  29. Энтальпия
  30. Процессы изменения параметров влажного воздуха

Насыщенный пар

Парциальное давление паров воды

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

[attention type=yellow]

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

[/attention]

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются и . Очевидно, и — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

(1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

[attention type=red]

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

[/attention]

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1).

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Рис. 2. Зависимость давления пара от температуры

[attention type=green]

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

[/attention]

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань.

Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра.

По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/nasyshhennyj-par/

Влагонакопление, пленки, точка росы… Часть 1

Парциальное давление паров воды

(В принципе, этот раздел можно не читать, считайте, что это мелкими буквами для любопытных).

Данные дают метеорологи. Это результаты замеров, а формулу получают экспоненциальной аппроксимацией (подбором формулы). Периодически, формулу пересматривают. С 2008-го года и по сей день, на планете Земля, она вот такая:

Формула парциального давления насыщенного водяного пара. Общемировой стандарт.

Полученную формулу парциального давления насыщенного пара, публикуют в специальном документе, едином для всей планеты: Guide to Meteorological Instruments and Methods of Observation

В СП 50.13330.2012 Тепловая защита зданий — предложена своя аппроксимация:

Формула парциального давления насыщенного водяного пара предложенная в СП Телозащита..

Мы видим, что в уравнении уже нет атмосферного давления (включено стандартное), формула упрощена.

Таблица давлений и плотностей насыщенного пара воды. Давление и плотность с литерой «сп» – вычислено по формуле СП Теплозащита. Без литеры — точное давление и плотность.

Как видим, аппроксимация довольно качественная, погрешности:

– при -30С 4% (в СП завышают давление).

– при +30, погрешность -0,8% (в СП занижают).

Цель своей аппроксимации понятна, не хотят грузить проектировщиков более сложными вычислениями, хотя сегодня, при наличии массы программ…

При этом возникают проблемы, этой формулой нельзя пользоваться в высокогорье (не учтено влияние давления), а нарушать СП — нельзя. И как проектировщики выкручиваются — можно только гадать. Скорее всего никак. Тупо считают по СП.

[attention type=yellow]

Зачем эти извраты и вообще, почему в 21-ом веке СП насыщенные расчетами до сих пор выпускают на бумаге, а не в виде сайта с наборами онлайн-расчетов — мне лично не понятно.

[/attention]

Какой смысл, доблесть, крутизна… — в демонстрации проектировщиком владения калькулятором? Тем более, что огромное количество народа в этой области — давно уже не понимает, что и зачем. Складывают «зеленые мячики в красные корзинки». И не дай Бог перепутать, чего в числитель, чего в знаменатель. Чему немало способствуют разработчики совр. СП (ну, вот злой я на НИИ СФ, что делать…).

Как все это работает, откуда пар в воздухе

Работает просто. Если взять сосуд, заполнить его абсолютно сухим воздухом, потом налить воды на дно и закрыть герметично, произойдут два события:

– уровень воды в сосуде начнет падать, со временем — падение остановится

– давление в сосуде повысится. Для комнатных условий — немного около 2%.

Что произошло? Часть воды из жидкого состояния, перешла в газообразное. В водяной пар. Конкретно, при температуре 20С, в куб воздуха перейдет 18,6 грамм воды, а его давление повысится на 2344 Па (см. таблицу насыщенного пара).

Если мы поднимем температуру в сосуде, то оба явления повторятся. Уровень жидкости еще упадет, а давление в сосуде возрастет сверх вызванного подъемом температуры. Для 30 градусов, давление подрастет на 4254 Па, а в куб воздуха перейдет 33.75 грамм воды.

Почему так? В смысле почему именно 33,75 грамм? Ответ простой — так устроен наш мир. Никто не знает, почему постоянная Планка такая. И почему при +30, куб воздуха не может содержать больше 33.75 грамм воды.

Дума очевидно почему, когда вода перестала испарятся, воздух над этой водой, считают 100% влажности. Это означает, что не изменив температуры, никаким образом ни миллиграмма пара в этот воздух не добавить. Такой пар, называют насыщенным.

При этом, воздух еще прозрачен. Пар это газ. «Пар» изо рта, туман — это не газ, не пар, это аэрозоль, мельчайшие капельки жидкой воды.

[attention type=red]

А что произойдет, если остудить воздух с влажностью 100%. Скажем с +20С, до +19С? А очень просто, при +20С в кубе может содержаться не более 18.6 грамм пара, а при -19С, всего 17.47. Т.е. в воду вернется 18,6-17,47=1.13 грамм пара и мы увидим повышение уровня воды в сосуде на эту величину. Либо 1.13 грамма конденсата на стенках сосуда.

[/attention]

Каким образом, в комнате можно достичь 100% влажности? Тоже просто, закрыть комнату герметично, налить на пол лужу и подливать, пока не перестанет сохнуть. Как перестало — имеем 100% влажности. И если такую комнату остудить хотя бы на десятую градуса — выпадет конденсат. На поверхности того, чем остужали.

А если у меня на полу нет лужи и комната не герметична (форточка открыта) — откуда в ней вообще возьмется пар?

источник пара — сами люди и их деятельность.

в медицине, это называют скрытыми, или невидимыми потерями (воды), т.е. не через жкт, не через почки.

альвеолярный путь. около 400-500 грамм воды в сутки мы теряем с дыханием, на каждый куб выдыхаемого воздуха, теряется около 9 грамм воды.

кстати, интересный момент: посмотрите в таблицу, 9 грамм пара в кубе становится насыщенным при температуре около 8 градусов, при этом, часть пара, переходит в жидкость, в капельки тумана. и люди говорят — «пар изо рта», т.е. на улице около +8с.

трансэпидермальный (через кожу) путь. не путать с потовыделением. у людей с ангидрозом (отсутствием потовых желез) — эти потери точно такие же. при обширных раневых, ожоговых повреждениях кожи, потери могут достигать 5 литров в сутки. в норме те же 400-500 грамм пара в сутки. при этом, у детей близко к взрослым (тонкая кожа).

человек в сутки, продуцирует до килограмма пара. так устроен.

к этому, полили цветочки (практически вся вода перейдет в пар), помыли посуду, чайник, кастрюльки, белье сушится…

в среднем, до 1,5 — 2 кг пара в сутки, человек и его деятельность.

ладно, пар в воздухе есть. а с чего ему идти в стену, если есть форточка, откуда проблема влагонакопления ограждений?

а он и идет «в форточку» (вентиляцию). но не успевает.

давайте прикинем. человек произвел в сутки 1800 грамм пара. вентиляция 30 м3/ч на человека, в сутки 720 м3. пусть на улице -5с с влажностью 70%, куб уличного воздуха (смотрим в таблицу) содержит 3,36*0,7=2,4 грамма. 720 кубов уличного воздуха, принесут с собой 1693 грамма пара.

т.е. суммарный приток пара 1.800+1.693= 3.5 кг. этот пар распределится на 750 м3, доведя содержание пара в кубе до 4,9 грамм, при +20с, это влажность 26%

и тут — важный вывод.

к пару уличного воздуха, в помещении, всегда добавляется пар продуцируемый людьми. количество пара внутри помещений — всегда больше.

далее, почему пар «попрет» в стенку. или о парциальных давлениях. но вначале, про:

диффузия газов

Вот, если честно, не хотел писать этот раздел. Но не хочется оставлять лазеек авторам доморощенной и самопальной физики (пар легче, он соберется под потолком, внизу влажности не будет, пароизоляция полов не нужна).

Этот раздел тоже будем считать написанным «мелкими буквами» (как и все главное в банковских договорах), т.е. «можно пропустить».

На самом деле, действие малых парциальных — загадка. Такая же, как почему постоянная Планка именно такая. Или почему на планете Земля, при +20 в куб воздуха нельзя впихнуть больше 18,6 грамм пара. Ответ один — вот так устроен наш мир, мы всего лишь наблюдаем, замеряем и пытаемся найти закономерности.

Загадка в распределении одного газа в среде другого. Средние скорости молекул при нормальных условиях — сотни метров в секунду, но их настолько много, что средний путь между соударениями — сотые микрона. В результате, скорость диффузии газов — сантиметры в минуту.

Это хорошо подтверждается прямым наблюдением, например по диффузии углекислоты в воздухе. Про наблюдаем — в прямом смысле. Глазами. В сосуд наливают (газообразную углекислоту, можно именно налить) углекислоту, далее смотрят, как она диффундирует (смешивается) с воздухом.

[attention type=green]

Для этого используют мыльные пузыри, наполненные воздухом и углекислотой. Одни опускаются до границы углекислоты, другие уходят ниже. Физики они такие, хлебом не корми дай поиграться, «лишь бы не работать» :)

[/attention]

При этом, простейший эксперимент со стыренными у жены (в строго научных целях) и разлитыми духами — четко показывает, что ни о каким сантиметрах в минуту речь не идет. Метры в секунду. Молекулы летят пулями, так, как будто они в комнате одни, как будто за каждой молекулой этих духОв сидит Шумахер и лихо огибает все молекулы воздуха.

Как они это делают, как можно лететь по встречке в час пик, как по пустому шоссе — никто не знает, но каждый газ ведет себя так, как будто кроме него в смеси никого нет.

Собственно и современная теория газовой диффузии — исходит из этого.

Давно уже сформулирован закон Фика, замерены коэффициенты диффузии (для водяного пара в НУ 0,25 м2/с, тут, как именно это делают), давно известны количественные характеристики потока распространения пара в воздухе.

Скажем после выдоха человека — получим поток до 0,03 гр/м2*с, при том, что человек в секунду не может продуцировать более 0.01 грамма пара в секунду. Вот если бы в одну точку ухитрились бы дышать семеро людей, то сферу с площадью в квадратный метр — можно надышать до насыщения.

Ну, а то, что именно так устроен наш мир — в целом радует. Не приходится отползать во сне через каждые десяток вдохов из зоны, где полностью «выдышали» кислород, заменив его на углекислоту. Диффузия спасает.

Парциальное давление

Воздух — смесь газов. Их суммарное давление близко к 100 кПа (одна атмосфера). При этом, каждый из газов, вносит в это давление свою долю, свое парциальное давление, не исключение и водяной пар.

График давлений насыщенного пара

Вот так выглядит график столь печально знаменитой (невежественными толкованиями) точки росы. Выше графика — условия для перехода пара в воду. Ниже — останется газом.

«Точка росы», это точка этого графика. Одновременно, это может быть некой пространственной точкой, зоной. Скажем, если некое место в стене имеет температуру -10С и в этом месте присутствует пар с парциальным давлением 300 Па — в этом месте будет конденсат.

В принципе, можно сказать и «в этом месте будет точка росы», т.е. сочетание температуры и парциального давления пара, выше, чем на графике.

Статья выходит слишком большой, поэтому про процессы в ограждениях, про пироги стен, их расчеты и оптимальную влажность в помещении — будет во второй части.

Источник: https://zen.yandex.ru/media/optim_stroi/vlagonakoplenie-plenki-tochka-rosy-chast-1-5c98cca0a354b200b305e085

Влажность! Всюду водяные пары

Парциальное давление паров воды

Неопубликованная запись

Влажность воздуха

Насыщенный пар

Парциальное давление

Абсолютная влажность

Относительная влажность

Водяные пары

Точка росы

Максимальная влажность

Туман

Теория

В воздухе, как мы знаем, существуют расстояния между молекулами. Возьмем гипотетический шар 1м³ с температурой 40 °С и заполним его 4 молекулами воды.

Между молекулами остается пространство, которое заполняется молекулами воды, пусть остается 5 свободных мест.

Если все 5 «вакатных» мест заняты, то относительная влажность составляет 100%  (5 из 5). Такое состояние еще называют насыщенным паром.

[attention type=yellow]

Если нашлось только 3 молекулы воды, то относительная влажность составляет 60% (3 из 5).

[/attention]

Относительная влажность — величина, показывающая насколько далек пар от насыщения (сколько молекул воды могут занять свободные места).

Если же теперь взвесить первоначальный шар только с воздухом, а затем с воздухом и водой, то изменение массы и будет абсолютной влажностью 

Абсолютная влажность — масса молекул воды при данной температуре.

Точка росы — это температура, при которой водяной пар становится насыщенным (не осталось свободного места для молекул воды).

Надеюсь, ты читал внимательно и заметил, что все сравнения мы проводили при одной температуре. Можно находить относительную и абсолютную влажность только при одинаковой температуре!

При увеличении температуры растет абсолютная влажность. При T↑ Eк↑, значит, расстояние между молекулами воздуха увеличивается, тогда для молекул воды места будет больше. С ростом температуры увеличивается максимальная влажность. 

Максимальная влажность — максимальное количество газообразной воды, которое может поместиться в заданном объеме.

Туман

Тума́н — атмосферное явление, скопление воды в воздухе, когда образуются мельчайшие продукты конденсации водяного пара.

Почему слева на фото есть туман, справа его нет?

Туман возникает не всегда при низких температурах. Если на улице температура низкая, это не значит, что там появится туман. Туман возникает при резком спаде температур. Днем, например, температура была высокой, поэтому много влаги испарилось в воздух.

Ночью температура быстро опустилась — той влаги, что содержалась в воздухе до падения температуры (и была незаметна), становится слишком много — воздух становится перенасыщенным водой, и часть ее оседает в виде росы, а часть находится во взвешенном состоянии в воздухе.

Это и есть сам туман. 

Задачи

Для решения задач требуется две дополнительные формулы, помимо основных формул МКТ:

Плотность пара делим на плотность насыщенного пара при данной температуре или давление пара делим на давление насыщенного пара при данной температуре.

В скобочках написаны советы, когда какой формулой пользоваться:

Задача №1 Плотность водяного пара при температуре 25 °С равна 23 г/м³. Насыщенная это пар или ненасыщенный?

[attention type=red]

Насыщенный пар имеет относительную влажность φ = 100%. Для того, чтобы определить это, нужно открыть таблицу зависимости плотности насыщенного пара от температуры:

[/attention]

Ответ: насыщенный.

Задача №2 Относительная влажность воздуха равна 42 %, парциальное давление пара при температуре 20 °С равно 980 Па. Каково давление насыщенного пара при заданной температуре?

Парциа́льное давление — давление отдельно взятого компонента газовой смеси. Воздух состоит из множества газов, давление одного из газов равно 980 Па.

Нужно найти давление насыщенного пара, значит, воспользуемся формулой относительной влажности через давления:

Температура не меняется, значит, ее никак использовать не нужно.

Ответ: 2333 Па.

Задача №3 На рисунке изображена зависимость давления p насыщенного водяного пара от температуры t. Точкой A на этом графике обозначено состояние пара, находящегося в закрытом сосуде. Чему равна относительная влажность воздуха в этом сосуде?

О том, что показано на графике: 
Что самое главное при нахождение относительной влажности? Конечно, одинаковая температура! 

Сравниваем давления только при одинаковой температуре:

Начальная температура 80 °С и начальное давление 30 кПа, а давленые насыщенного пара при 80 °С 40 кПа, тогда:

Ответ: 0,75

Задача №4 При температуре t = 20 °С относительная влажность в комнате φ1 = 20%. Какую массу воды нужно испарить для увеличения влажности до φ2 = 50%, если объем комнаты V = 40 м³? Плотность насыщенных паров воды при температуре t = 20 °С равна ρ₀ = 1,73⋅10⁻² кг/м

Комнату можно представить в виде закрытого сосуда, значит, для нахождения относительной влажности воспользуемся формулой через плотность:

Изменение массы (сколько нужно испарить) найдем по определению:

Ответ: 0,21 кг

Задача №5 В сосуде объёмом 3 л при температуре +70 °C находится смесь воздуха с водяными парами. Давление в сосуде равно 99,2 кПа, относительная влажность воздуха 50 %. Давление насыщенного водяного пара при данной температуре равно 31,1 кПа. Какое количество воздуха находится в сосуде? 

Как вещи постепенно все труднее упаковывать в чемодан, так и давление все труднее и труднее повышать.

[attention type=green]

По закону Дальтона давление смеси газов равно сумме всех отдельных газов (Как объем полностью забитого чемодана равен сумме объемов всех вещей в нем).

[/attention]

Давление насыщенных водяных паров и относительная влажность известны, тогда можно найти давление паров:
Выразим давление сухого воздуха и представим его через уравнениеие Менделеева-Клапейрона:

Ответ: 88 милимоль

Задача №6 В закрытом сосуде объёмом 6 л при температуре +17 °C находится воздух, имеющий влажность 25%. Давление насыщенных паров воды при этой температуре равно 1875 Па. Какую массу воды надо испарить в сосуде при данной температуре для того, чтобы влажность воздуха стала равна 100%? Ответ выразите в миллиграммах и округлите до целого числа.

25% влажности уже есть, нам осталось добавить еще 75% и найти, сколько нужно добавить давления:

Остается выразить массу из уравнения Менд.-Кл. и подставить числа:

Ответ: 63 мг

Задача №7 В комнате размерами 4×5×3 м, в которой воздух имеет температуру 10 °C и относительную влажность 30 %, включили увлажнитель воздуха производительностью 0,2 л/ч. Чему станет равна относительная влажность воздуха в комнате через 1,5 ч? Давление насыщенного водяного пара при температуре 10 °C равно 1,23 кПа. Комнату считать герметичным сосудом. (ЕГЭ 2019)

Для начала найдем, сколько обрзовалось воды за 1,5 часа с мощностью 0,2 л/ч.

Начальное давление в комнате можно найти уже по известной нам формуле:

С этими знаниями через уравнение Менд.-Кл. найдем начальную массу воды в газообразном состоянии:

Через 1,5 часа в воздухе окажется почти полкило воды, найдем давление:

Ответ: 83%

Задача №8 Два сосуда объёмами 20 л и 30 л, соединённые трубкой с краном, содержат влажный воздух при комнатной температуре. Относительная влажность в сосудах равна соответственно 30% и 40%. Если кран открыть, то какой будет относительная влажность воздуха в сосудах после установления теплового равновесия, считая температуру постоянной? (ЕГЭ 2015)

В данной задаче говорится о закрытых сосудах, значит, через какую формулу будем выражать относительную влажность? Да, через плотность!

Плотность можно найти через отношение массы к объему, а дальше расписываем как сумму масс и объемов:

Остается соединить выведенные соотношения (1), (2), (3), сократить плотность насыщенных паров и получить ответ:

Ответ: 36%

[attention type=yellow]

Задача №9 После тёплого летнего дождя относительная влажность воздуха уповерхности земли достигла 100%. При этом плотность влажного воздуха (масса пара и воздухав 1 м³) оказалась равной ρ = 1171 г/м³, его давление p = 100 кПа и температура 22 °C. Найти по этим данным давление насыщенного водяного пара при температуре 22 °C. Молярная массавоздуха Mв = 29 г/моль. (МФТИ 1999)

[/attention]

По закону Дальтона запишем, что плотность и давление влажного воздуха находятся как сумма сухового воздуха и пара:

Выразим через уравнение Менд.-Кл. плотность сухового воздуха через давление:

А теперь наоборот выразим давление пара через плотность:

Подставляя теперь в ур-ие (4) ур-ие (2), ур-ие (3) и затем ур-ие (1) получим уравнение относительно давления пара:
Остается выразить и подставить значения:

Ответ: 2,7 кПа

Хорошая тема, и в баньку с ней сходить можно, и с туманом познакомиться. Не знаю, чего она так вам не нравится. Помни, какую формулу и где лучше применить — это на порядок упростит решение задач!

В качестве закрепления материала решите несколько похожих задач с ответами. 

Будь в курсе новых статеек, видео и легкого технического юмора.

Источник: https://ik-study.ru/ege_po_fizikie/okh_kak_vlazhno_vsiudu_vodianyie_pary

Свойства водяного пара: температура, тройная точка, упругость, термодинамическое равновесие, плотность

Парциальное давление паров воды

Изучение теплофизических свойств воды и водяного пара помогает понять, почему происходит испарение. Благодаря динамическому равновесию газообразного и жидкого состояния Н2О осуществляется круговорот воды в природе.

Атмосфера планеты служит защитным колпаком, в ней происходят те же термодинамические процессы, что и в закрытой емкости с водой. Зависимость давления пара от температуры, плотности соответствует уравнению Менделеева-Клапейрона.

С помощью формул можно вычислить, чему будет равна плотность пара в пузырьках, поднимающихся к поверхности воды, или при какой температуре закипит вода, если подняться на гору, где давление воздуха ниже.

Вода превращается в пар при температуре

Понятие «водяной пар» характеризует свойство жидкостиулетучиваться. Начало испарения — отрыв частичек воды от поверхности воды. Изжидкого агрегатного состояния молекулы переходят в газообразное.

Превращение вгазовую фазу происходит до момента насыщения, когда возникает равновесие междужидкой или твердой субстанцией и газом. Молекула воды не в силах оторваться отповерхности, если плотность достигает максимальной величины, газ становитсянасыщенным.

Определить величину давления насыщения водяного пара можно длялюбой температуры. Даже лёд обладает способностью испаряться.

Когда говорят об испарении, уточняют градусы Цельсия, при которых начинается парообразование. При 100°С жидкость закипает только при атмосферном давлении 760 мм рт. столба. Чем ниже давление, тем свободнее отрываются частицы воды от поверхности, насыщая воздух.

Снижение давления до 0,006 атмосфер (тройная точка) приводит к тому, что вода одновременно присутствует в трех фазовых состояниях: жидком, твердом, газообразном. Кипение воды в лабораторных условиях достигается без перехода в жидкое состояние.

Происходит вскипание твердой фазы, процесс называется возгонкой. Лед трансформируется в газообразное состояние при температуре –0,1°С под давлением ниже тройной точки.

[attention type=red]

Величину давления и плотности насыщенного водяного пара при различной температуре устанавливают экспериментальным путем.

[/attention]

Способность паров насыщать воздух характеризуетсявлажностью. Упругость водяного пара определяют прибором для измерениявлажности, он называется психрометром. Измеряется парциальное давление водяныхпаров, находящихся в атмосферном воздухе.

Насыщенный водяной пар

Вернемся к эксперименту. Итак, у нас в закрытой банкежидкость. Что происходит? Испарение воды. Процесс начинается при низкойплотности воздуха. Благодаря пару, давление на поверхность жидкости возрастает,оно препятствует движению молекул. Их все меньше и меньше отрывается от воды.

Наступает момент, когда образуются капли влаги. Этот процесс называется«конденсация». Когда скорость образования пара равна скорости конденсации,возникает термодинамическое равновесие. Пар в этот момент считается насыщенным.Жидкость и газ уравновешивают друг друга.

Такое состояние достигается приопределенных условиях, важные параметры:

  1. Температура, изменение на долю градуса нарушает равновесие. При повышении парообразование ускоряется, при понижении увеличивается процесс конденсации влаги.
  2. Давление, при его понижении молекулы жидкой фазы свободнее передвигаются, отрываются от поверхности, начинается испарение воды.

Почему не учитывается объем банки? Он не меняет термодинамических свойств воды и водяного пара в состоянии насыщения. Допустим, крышка экспериментальной банки опустилась ниже, объем уменьшился. К чему это приведет? Пар будет ускоренно конденсироваться до момента равновесия. При увеличении объема ускорится парообразование, но замкнутая система опять придет в равновесное состояние.

Изучая термодинамику, легко понять, почему пар обжигаетсильнее воды той же температуры. Что такое кипение? Состояние, при которомжидкая фаза активно превращается в парообразное состояние. Следовательно,происходит обратный процесс конденсации, он сопровождается выделением теплоты.За счет этого ожог от пара сильнее.

Удельная теплоемкость возрастает, если повышается температураводы. Процесс парообразования виден в момент кипения. При повышении давлениятемпература газов достигает 200°С, это свойство используется в теплотехнике,горячим, вязким паром заполняют теплообменники.

Давление насыщенного водяного пара

Формула p=nkT указывает на прямую зависимость давленияидеального газа (p) и его температуры (Т). Параметр n –число молекул,содержащихся в заданном объеме, характеризует плотность пара. ПостояннаяБольцмана k устанавливает взаимосвязь температуры с энергией образованиявещества (энтальпия).

Пар нельзя сравнивать с идеальным газом. Его давление приповышении температуры растет быстрее из-за повышения плотности. Концентрациячастиц в неизменном объеме возрастает.

Эти особенности свойств водяного паранеобходимо учитывать при расчетах давления насыщенного водяного пара.

Если видеальном газе возрастает энергия ударов молекул о стенки сосуда, то внасыщенном паре существенно возрастает число ударов за счет увеличенияконцентрации активных частиц.

Плотность насыщенного водяного пара

Плотностью называется отношение массы вещества к его объему.Этот параметр характеризует расстояние между отдельными молекулами. В жидкойфазе они сцепляются между собой, в твердой расположены симметрично относительнодруг друга. В газообразном находятся на произвольном удаленном расстоянии, чемобъясняется отличие плотности водяного пара от плотности воды.

Теперь подробно рассмотрим, какое влияние оказывает наплотность насыщенных водяных паров изменение температуры. Она непостоянна из-заизменения массы газообразной фазы:

  • при повышении температуры она возрастает за счетускорения испарения;
  • при понижении – падает, вода активноконденсируется.

По сути, она должна постоянно меняться, так как частицы водынепрерывно движутся, переходят из одного агрегатного состояния в другое. Но придинамическом равновесии концентрация неизменна: сколько молекул испарится,столько же конденсируется. Показатели устанавливаются экспериментально длякаждой температуры. Их значения сведены в таблицы.

Источник: https://VodaVoMne.ru/svojstva-vody/svojstva-vodyanogo-para

Влажный воздух. Параметры влажного воздуха

Парциальное давление паров воды

Для человека воздух – это и окружающая среда и пища для лёгких и источник кислорода.

Не смотря на то, что воздух не улавливается ни одним из пяти чувств (он прозрачен, без вкуса и запаха, бесшумен и неосязаем), о его существовании известно достаточно давно.

Его свойства изучены, значение общепризнанно и он не вызывал бы у нас никаких вопросов и сложностей в быту, если бы не наличие в нём ещё одного уникальнейшего вещества – воды, точнее – водяного пара.

Влажный воздух

Итак, смесь сухого воздуха и водяного пара называется влажным воздухом.

Именно влажный воздух окружает нас повсеместно, именно он сушит бельё после стирки, постепенно опустошает ёмкость с водой, а иногда напоминает о себе запотевшими стеклами и конденсатом на поверхности холодного предмета.

[attention type=green]

Он может способствовать накоплению статического электричества на металлических поверхностях, развитию астмы у людей, иссушать растения, ухудшать наше самочувствие в теплую погоду. Попробуем же разобраться с его свойствами, характеристиками и процессами! Перед нами – влажный воздух!

[/attention]

Влажный воздух, как мы уже определились, это смесь сухого воздуха с водяным паром, причем смесь эта не находится в состоянии равновесия, т.е. постоянно меняется, и именно эта неравновесность представляет огромную сложность в изучении. Без неё книги о влажном воздухе превратились бы в пару абзацев.

Как и у любого вещества, у влажного воздуха есть основные параметры, определяющие его состояние, и достаточно трех независимых из них, чтобы полностью определить его состояние. Однако, из-за сложности ввиду неравновесности, а также для удобства описания процессов обычно выделяют 6 основных параметров влажного воздуха. Перечислим их:

  1. Давление (абсолютное), P, атм;
  2. Температура, t, К или С;
  3. Относительная влажность, φ, %;
  4. Энтальпия, i, кДж/кг*С;
  5. Влагосодержание, d, г/кг;
  6. Парциальное давление водяного пара, pп, Па.

I-d диаграмма влажного воздуха

Наиболее полное представление о возможных состояниях влажного воздуха с использованием всех шести вышеперечисленных параметров даёт I-d диаграмма влажного воздуха (Диаграмма Рамзина):

Она выполняется для какого-либо определенного давления и на ней изображены изолинии по оставшимся пяти параметрам. Очевидно, что наиболее распространена диаграмма, построенная для давления в одну атмосферу (см. рис. выше). В случае, если необходимо исследовать влажный воздух при различных давлениях, существует соответствующая диаграмма с линиями изобар.

Но мы обратимся к диаграмме Рамзина. Ещё раз особо отметим, что диаграмма построена строго для определенного давления, а потому один из трех независимых параметров уже задан. Это следует помнить всегда!

Итак, давление задано, по оси ординат отсчитывается температура (t), по оси абсцисс – влагосодержание (d), вправо вниз наклонены линии постоянной энтальпии (i), справа по вертикали – ось парциальных давлений (pп), а единственные изогнутые линии – это показатели относительной влажности (φ).

Сложность в определении, пожалуй, вызывает только парциальное давление. Для этого от заданной точки опускается вертикаль вниз до пересечения с наклонной прямой под жирной пограничной линией (φ=100%) и далее горизонталь вправо подскажет искомое значение.

Кстати, точка пересечения вертикали с пограничной кривой – это точка росы – ещё одно важнейшее понятие, его также следует запомнить. Ещё одно часто встречающийся термин – температура влажного термометра, она же температура насыщенного воздуха.

За линию с заданной постоянной температурой влажного термометра с высокой точностью можно принять изоэнтальпу, проходящую через точку росы, обладающую заданной температурой.

Параметры влажного воздуха

Но мы, наверное, уже далеко забрались, так и не объяснив, что такое влагосодержание, энтальпия и уж тем более парциальное давление водяного пара. Начнём с простого. Касательно температуры и давления вопросов, я думаю, не возникает.

Влагосодержание

Воздух, не содержащий водяного пара, называется сухим. Если сухому воздуху показать каплю воды, он мгновенно её испарит и станет влажным. Итак, влагосодержание – это отношение массы воды к массе сухого воздуха, в котором эта вода испарилась.

Однако, продолжим: вторую каплю он также испарит, но немного медленнее. Третья капля испарится ещё медленнее. Наконец, на N-ной капле воздух “устанет” вбирать в себя воду. Он насытится ею, “напьется водой”.

Это будет насыщенный влажный воздух (та самая жирная линия на диаграмме).

Парциальное давление водяного пара

Встаёт вопрос, почему всё так происходит? Видимо, что-то толкает воздух впитывать в себя влагу до определенного момента. Что это за движущая сила? Для примера вспомним горячую плиту на кухне.

Воздух вокруг неё нагревается, и для нас очевидно, что движущей силой является разность температур между плитой и воздухом. Воздух будет греться до тех пор, пока плита не остынет, т.е.

не станет той же температуры, что и воздух – процесс прекратится.

Вернёмся к влажному воздуху. Он в своём составе имеет водяной пар. Парциальным давлением водяного пара влажного воздуха называется то давление, которое обретет водяной пар в замкнутом объёме, если из этого объема убрать весь сухой воздух.

[attention type=yellow]

Очевидно, что в воздухе водяного пара совсем мало (об этом нам говорит влагосодержание, которое измеряется величинами порядка 0.005…0.

[/attention]

03 кг/кг), а, значит, при исчезновении сухого воздуха из некого объёма, оставшийся пар будет вполне вольготно себя чувствовать в предоставленном объеме, следовательно, иметь низкое давление. Это означает, что и парциальное давление водяного пара достаточно низко.

Действительно, оно измеряется тысячами Паскалей, а ведь атмосферное давление воздуха равно примерно ста тысячам Паскалей. Снова вернемся к поглощаемым каплям.

Движущей силой процесса испарения служит именно разность парциальных давлений. У капли воды оно равно некоторой величине, а у сухого воздуха – нулю. Процесс испарения максимально активен.

Далее, парциальное давление водяного пара растет, процесс замедляется и заканчивается в условиях их равенства. Водяным паром во влажном воздухе достигнуто давление насыщения. Оно же называется давлением насыщенного водяного пара.

Сама же кривая насыщения – это известная нам жирная линия.

Относительная влажность

Следующий вопрос: как определить, насколько имеющийся влажный воздух насыщен водяным паром? Другими словами, каково отношение текущего давления водяного пара к давлению насыщения? На этот вопрос в точности отвечает относительная влажность, разве что для удобства измеряется она в процентах, а потому упомянутое отношение умножается на 100%. Итак, относительная влажность – это отношение текущего давления водяного пара к максимально возможному для данной температуры.

Энтальпия

Далее, любое вещество обладает некоторой энергией. Очевидно, его энергия тем больше, чем выше температура. Для сухого воздуха это единственный параметр, определяющий энтальпию.

Однако для влажного воздуха следует учесть, что при той же температуре он включает в себя и энергию испаренной влаги – энтальпия влажного воздуха зависит и от температуры и от влагосодержания.

Причем при той же температуре в зависимости от влагосодержания разброс энтальпий может быть огромен – и 100 и 200 и 300% – чем выше температура, тем выше. Это невооруженным глазом видно из I-d-диаграммы: чем выше температура, тем выше рассматриваемая изотерма и тем больше наклонных изоэнтальп её пересекает.

Итак, энтальпия влажного воздуха – это сумма энтальпий сухого воздуха и водяного пара, причем первая пропорциональна температуре (коэффициент пропорциональности – теплоемкость сухого воздуха), а вторая пропорциональна влагосодержанию.

Процессы изменения параметров влажного воздуха

Оборудование, так или иначе связанное в своей работе с влажным воздухом, меняет его параметры – увеличивает температуру, добавляет в него влагу или осушает и т.д. Для проектирования и расчета режимов работы этого оборудования необходимо знать основные характеристики и методы реализации процессов изменения параметров влажного воздуха.

Выделяют следующие процессы, которые будут рассмотрены в соответствующих статьях:

Источник: https://aboutdc.ru/page/354.php

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: