Пентоза входящая в состав днк

Содержание
  1. Что собой представляет нуклеотид: вид, строение и длина одного нуклеотида
  2. Понятие нуклеотида
  3. Состав и основные свойства нуклеотидов
  4. Нуклеиновые кислоты
  5. Состав азотистых оснований
  6. Образование фосфодиэфирных связей
  7. Структура ДНК
  8. Функции и свойства ДНК
  9. Молекула РНК – структура
  10. Роль нуклеотида в организме
  11. Химический состав нуклеотидов
  12. 3.2.1 Азотистые основания
  13. 3.2.2. Углеводные компоненты
  14. 3.2.3. Нуклеозиды
  15. 3.2.4. Мононуклеотиды
  16. 3.2.5. Структура нуклеиновых кислот
  17. 3.2.6. Дезоксирибонуклеиновые кислоты (ДНК)
  18. 3.2.7. Рибонуклеиновые кислоты (РНК)
  19. Днк (дезоксирибонуклеиновая кислота)
  20. Строение ДНК
  21. Строение нуклеотидов в молекуле ДНК
  22. Уровни структуры ДНК
  23.  Правило Чаргаффа
  24. Модель ДНК Уотсона-Крика
  25. Интересные факты о ДНК
  26. В чем отличие днк от рнк?
  27. Что такое нуклеиновые кислоты
  28. Структура мономеров
  29. Углевод пентоза
  30. Азотистые основания
  31. Отличие ДНК от РНК: таблица
  32. Типы РНК
  33. Черты сходства ДНК и РНК
  34. Функциональное отличие ДНК от РНК

Что собой представляет нуклеотид: вид, строение и длина одного нуклеотида

Пентоза входящая в состав днк

Все живое на планете состоит из многочисленных клеток. Они поддерживают упорядоченность своей организации с помощью генетической информации, содержащейся в ядре, которая сохраняется, передается и реализуется высокомолекулярными сложными соединениями — нуклеиновыми кислотами. Кислоты эти, в свою очередь, состоят из мономерных звеньев – нуклеотидов.

  • Понятие нуклеотида
  • Состав и основные свойства нуклеотидов
  • Нуклеиновые кислоты
  • Состав азотистых оснований
  • Образование фосфодиэфирных связей
  • Структура ДНК
  • Функции и свойства ДНК
  • Молекула РНК – структура
  • Роль нуклеотида в организме

Роль нуклеиновых кислот переоценить невозможно. Нормальная жизнедеятельность организма определяется стабильностью их структуры. Если в строении происходят любые отклонения , меняется количество либо последовательность — это обязательно приводит к изменениям в клеточной организации. Изменяется активность физиологических процессов и жизнедеятельность клеток.

: водородная связь образуется между молекулами, химический механизм.

Понятие нуклеотида

Как и белки, нуклеиновые кислоты необходимы для жизни. Это генетический материал всех живых организмов, включая вирусы.

Выяснение структуры одного из двух типов нуклеиновых кислот ДНК позволило понять, каким образом в живых организмах хранится информация, необходимая для регулирования жизнедеятельности и как она передается потомству. Нуклеотид представляет собой мономерную единицу, образующую соединения более сложные — нуклеиновые кислоты.

Без них невозможно хранение, воспроизведение и передача генетической информации. Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.Из них строятся длинные молекулы — полинуклеотиды.

Чтобы разобраться со структурой полинуклеотида следует понять строение нуклеотидов.

[attention type=yellow]

: типы кристаллических решёток, таблица.

[/attention]

Что такое нуклеотид? Молекулы ДНК собраны из мелких мономерных соединений. Другими словами, нуклеотид — это органическое сложное соединение, представляющее собой составную часть нуклеиновых кислот и других биологических соединений, необходимых для жизнедеятельности клетки.

Состав и основные свойства нуклеотидов

В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:

  1. Пентоза или пятиугольный сахар:
  • дезоксирибоза. Эти нуклеотиды называют дезоксирибонуклеотидами. Они входят в состав ДНК;
  • рибоза. Нуклеотиды входят в состав РНК и называются рибонуклеотидами.

2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом

3. Фосфатная группа, состоящая из остатков фосфорной кислоты ( в количестве от одного до трех). Присоединяется к углероду сахара эфирными связями, образующими молекулу нуклеотида .

Свойствами нуклеотидов являются:

  • участие в метаболизме и других физиологических процессах, которые протекают в клетке;
  • осуществление контроля над репродукцией и ростом;
  • хранение информации о наследуемых признаках и о структуре белка.

Нуклеиновые кислоты

Сахар в нуклеиновых кислотах представлен пентозой. В РНК пятиуглеродный сахар называется рибозой, в ДНК — дезоксирибозой. В каждой молекуле пентозы пять атомов углерода, из которых четыре образуют кольцо с атомом кислорода , а пятый атом входит в группу НО-СН2.

В молекуле положение атома углерода обозначается цифрой со штрихом (например:1C´, 3C´, 5C´). Так как у вех процессов считывания с молекулы нуклеиновой кислоты наследственной информации имеется строгая направленность, нумерация углеродных атомов и их расположение служат указателем верного направления.

С первым углеродным атомом 1C´ в молекуле сахара соединяется азотистое основание.

К третьему и пятому углеродным атомам по гидроксильной группе (3C´, 5C´) присоединяется остаток фосфорной кислоты, который определяет химическую принадлежность к группе кислот ДНК и РНК.

Состав азотистых оснований

Виды нуклеотидов по азотистому основанию ДНК :

Первые два класса — пурины:

Два последние относятся к классу пиримидинов:

Пуриновые соединения по молекулярной массе тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому соединению представлены:

  • гуанином;
  • аденином;
  • урацитолом;
  • цитозином.

Так же, как тимин, урацил является пиримидиновым основанием. Нередко в научной литературе азотистые основания обозначаются латинскими буквами (A, T, C, G, U).

Пиримидины, а именно тимин, цитозин, урацил представлены шестичленным кольцом, состоящим из двух атомов азота и четырех атомов углерода, последовательно пронумерованных , от 1 до 6.

Пурины (гуанин и аднин) состоят из имидазола и пиримидина. В молекулах пуриновых оснований четыре атома азота и пять атомов углерода. У каждого атома имеется свой номер от 1 дот 9.

Результатом соединений азотистых остатков с остатками пентозы является нуклеозид. Нуклеотид – это соединение фосфатной группы с нуклеозидом.

Образование фосфодиэфирных связей

Следует разобраться в вопросе о том, как нуклеотиды соединяются в полипептидную цепь, сколько их участвует в процессе ,образуя молекулу нуклеиновой кислоты за счет фосфодиэфирных связей.

При взаимодействии двух нуклеотидов образуется динуклеотид. Новое соединение образуется путем конденсации, когда возникает фосфодиэфирная связь между гидроксигруппой пентозы одного мономера и фосфатным остатком другого.

Синтезом полинуклеотида является многочисленное повторение этой реакции. Сборка полинуклеотидов представляет сложный процесс, обеспечивающей рост цепи с одного конца.

Структура ДНК

Молекулы ДНК, как и молекулы белка, имеют первичную, вторичную структуры и третичную. Первичную структуру в цепи ДНК определяет последовательность нуклеотидов. В основе вторичной структуры лежит формирование водородных связей.

При синтезе двойной спирали ДНК имеется определенная закономерность и последовательность: тимин одной цепи соответствует аденину другой; цитозин – гуанину, и наоборот.

Соединения нуклеидов создают прочную связь цепей, с равным между ними расстоянием.

[attention type=red]

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

[/attention]

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Функции и свойства ДНК

Основные функции ДНК:

  • сохраняет наследственную информацию;
  • передача (удвоение/репликация);
  • транскрипция, реализация;
  • ауторепродукция ДНК. Функционирование репликона.

Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.

Репликон представляет собой единицу репликационного процесса участка генома, подконтрольного одной точке инициации репликации. Как правило, геном прокариот -это репликон. Репликация от точки инициации идет в обе стороны, иногда с различной скоростью.

Молекула РНК – структура

РНК является одной полинуклеотидной цепочкой, которая образуется через ковалентные связи между фосфатным остатком и пентозой . Она короче ДНК, имеет другую последовательность и различается по видовому составу азотистых соединений. Пиримидиновое основание тимина в РНК заменяется урацилом.

РНК может быть трех видов, в зависимости от тех функций, которые выполняются в организме:

  • информационная (иРНК) — очень разнообразная по нуклеотидному составу. Она является своего рода матрицей для синтеза белковой молекулы, переносит генетическую информацию к рибосомам от ДНК;
  • транспортная (тРНК) в среднем состоит из 75-95 нуклеотидов. Она переносит необходимую аминокислоту в рибосоме к месту синтеза полипептида. У каждого вида тРНК и есть своя, присущая только ему последовательность нуклеотидов или мономеров;
  • рибосомальная (рРНК) обычно одержит от 3000 до 5000 нуклеотидов. Рибосом является необходимым структурным ом компонент участвующим в важнейшем процессе, происходящем в клетке – биосинтезе белка.

Роль нуклеотида в организме

В клетке нуклеотиды выполняют важные функции:

  • являются биорегуляторами;
  • используются как структурные блоки для нуклеиновых кислот ;
  • входят в состав главного источника энергии в клетке — АТФ;
  • участвуют во многочисленных обменных процессах в клетках;
  • являются переносчиками восстановительных эквивалентов в клетках (ФАД, НАДФ+; НАД+; ФМН);
  • могут рассматриваться как вестники регулярного внеклеточного синтеза (цГМФ, цАМФ).

Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.

Источник: https://obrazovanie.guru/himiya/nukleotid-stroenie-massa-dlina-posledovatelnost.html

Химический состав нуклеотидов

Пентоза входящая в состав днк

Нуклеиновые кислоты – это гетерополимеры, мономерами которых являются нуклеотиды.

Нуклеотиды – органические соединения, состоящие из азотистого основания, углеводного остатка и остатка фосфорной кислоты.

3.2.1 Азотистые основания

Азотистые основания – это ароматические гетероциклические соединения, производные пурина или пиримидина.

Пуриновые основания (пурины) – это аденин и гуанин.

К пиримидиновым основаниям (пиримидинам) относятся цитозин, тимин и урацил.

Пуриновые основания аденин (Ade) и гуанин (Gua), а также пиримидиновое основание цитозин (Cyt) входят как в состав ДНК, так и в состав РНК. В состав только ДНК входит пиримидиновое основание тимин (Thy). Пиримидиновое основание урацил (Ura) входит в состав только РНК.

3.2.2. Углеводные компоненты

Углеводная часть нуклеиновых кислот представлена моносахаридами (пентозами) – дезоксирибозой в ДНК и рибозой в РНК. Они всегда существуют в β – D -фруктозной форме.

В дезоксирибозе гидроксильная группа (-ОН) у второго атома углерода в отличие от рибозы заменена на атом водорода (-Н), что увеличивает прочность молекулы ДНК.

3.2.3. Нуклеозиды

Соединения азотистых оснований с углеводными остатками образуют нуклеозиды, которые получили свои названия в зависимости от тех азотистых оснований и пентоз, которые входят в их состав (табл.3)

Состав и название нуклеозидов

НуклеозидОбозначениеАзотистое основаниеПентоза
АденозинААденинРибоза
ДезоксиаденозинДААденинДезоксирибоза
ГуанозинГГуанинРибоза
ДезоксигуанозиндГГуанинДезоксирибоза
ЦитидинЦЦитозинРибоза
ДезоксицитидиндЦЦитозинДезоксирибоза
УридинУУрацилРибоза
ТимидинтТиминДезоксирибоза

Так, например, аденин и рибоза образуют нуклеозид аденозин (сокращенно А). Соответствующие производные других азотистых оснований носят названия гуанозин (G или Г), уридин (U или Y), тимидин (Т), цитидин (С или Ц). Если углеводный остаток представлен 2-дезоксирибозой, образуется дезоксинуклеозид, например, 2'-дезоксиаденозин (дА).

Ниже представлены структурные формулы нуклеозидов РНК – аденозина и цитидина и ДНК – 2'-дезоксиаденозина и 2'-дезокснцнтнднна.

3.2.4. Мононуклеотиды

В клетках 5'- ОН – группа углеводного остатка нуклеозида этерифицирована фосфорной кислотой. Монофосфатные эфиры нуклеозидов называются мононуклеотидами. Так, например, ниже представлены структурные формулы нуклеотидов гуанозинмонофосфат (ГМФ) и 2'-дезокситимидинмонофосфат (дТМФ).

Мононуклеотиды – структурные звенья нуклеиновых кислот.

Если 5'- фосфатный остаток мононуклеотида соединяется еще с одним остатком фосфорной кислоты, образуется нуклеозидтрифосфат, с двумя остатками – нуклеозидтрифосфат. Ниже представлены структурные формулы аденозинтрифосфата (АДФ или АБР) и аденозинтрифосфата (АТФ или АТР).

АДФ (АБР) и АТФ (АТР) – важнейшие коферменты энергообмена.

3.2.5. Структура нуклеиновых кислот

Молекулы нуклеиновых кислот живых организмов всех типов – это длинные неразветвленные полимеры мононуклеотидов. В молекулах нуклеиновых кислот нуклеотиды связаны через остаток фосфорной кислоты одного нуклеотида и З'- ОН – группу сахара другого. Таким образом, мононуклеотиды соединяются в молекуле нуклеиновой кислоты фосфодиэфирной связью.

Полинуклеотиды, составленные из рибонуклеотидных звеньев, называются рибонукленовыми кислотами – РНК, а составленные из дезоксирибонуклеотидных мономеров – дезоксирибонуклеиновыми кислотами – ДНК (рис. 11).

Рис. 11. Структура РНК и ДНК

При обозначении полинуклеотидов указывают сокращенные названия нуклеозидных звеньев в направлении от 5'-конца нуклеиновой кислоты к 3'- концу (5' —> 3').

Так, начало РНК на рис. 11 можно записать как УЦЦУА.Ц и т. д.

3.2.6. Дезоксирибонуклеиновые кислоты (ДНК)

Первичная структура ДНК представляет собой гетерополимерную двойную нить нуклеотидов. Молекула ДНК закручена в виде двойной спирали, нити которой соединены друг с другом по всей длине водородными связями.

Водородные связи образуются между азотистыми основаниями, расположенными во внутренней части молекулы. Азотистые основания соединяются друг с другом по принципу комплементарности (дополнения): А – Т, Г – Ц.

Пара А-Т может образовывать два, а пара Г – Ц три линейных и поэтому устойчивых водородных мостика (водородные связи). Ниже представлено спаривание оснований в ДНК.

В функциональном отношении две цепи ДНК не эквивалентны. Кодирующей цепью (матричной, смысловой) является та из них, которая считывается в процессе транскрипции. Именно эта цепь служитматрицей для РНК. Некодирующая цепь (антисмысловая) по последовательности подобна РНК (при условии замены Т на У).

Модель строения молекулы (пространственной структуры) ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г., за что они были удостоены Нобелевской премии. Модель полностью подтверждена экспериментально, и это открытие сыграло исключительно важную роль в развитии молекулярной биологии и генетики.

Несмотря на различия в структуре ДНК, в суммарном нуклеотидном составе ДНК всех типов имеются общие закономерности, установленные Э. Чаргаффом (правила Чаргаффа):

1) молярное соотношение А и Т равно 1 (А/Т =1);

2) молярное соотношение Г и Ц равно 1 (Г/Ц = 1);

3) сумма пуриновых оснований равна сумме пиримидиновых.

3.2.7. Рибонуклеиновые кислоты (РНК)

Первичная структура РНК представляет собой гетерополимерную нить, состоящую из нуклеотидов (А, Г, Ц, У), сахар которых представлен рибозой.

В зависимости от выполняемой функции РНК подразделяются на три вида:

– информационные – иРНК (или матричные – мРНК),

– рибосомальные – рРНК

– транспортные – тРНК.

У каждого вида РНК свой размер, свое строение и своя продолжительность существования (табл. 4).

Таблица 4

Классификация РНК

ХарактеристикаВид
иРНКрРНКтРНК
Доля во всей РНК, %58010 – 20
Размер, н400 – 6000120-500070 – 90
СтруктураНитьАссоциируют с белкомВ виде клеверного листа
Количество подтипов10004Более 50
Время жизниКороткоеПродолжительноеПродолжительное
МестонахождениеЯдро, цитоплазма, рибосомы, митохондрии, пластидыРибосомыЦитоплазма, рибосомы
ФункцияПереносит генетическую информацию из клеточного ядра в цитоплазму к месту синтеза белкаСтруктурный компонент рибосом – образует рибосомуТранспорт аминокислот к месту синтеза белка (в рибосому)

РНК всех трех видов участвуют в биосинтезе белка – трансляции (см. далее подраздел 3.6).

Источник: https://lifelib.info/biochemistry/biochemistry_1/29.html

Днк (дезоксирибонуклеиновая кислота)

Пентоза входящая в состав днк

ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула.

 Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой.

Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).

Участок молекулы ДНК, кодирующий определенный признак, – ген.

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки,  другие — только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).Рисунок 1 : ДНК – строение одной цепочки нуклеотидов

При этом,  фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка,  а  органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),Рисунок 2: Азотистые основания- пуриновые и пиримидиновые

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен  2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН),  а  в РНКрибозой, имеющей 2 гидроксильные группы(OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец),  а  на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура  ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется  водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек,  закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК.

Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов.

Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет  8 см,  а в форме суперспирали укладывается в 5 нм.

 Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т  или (А + G)/(C + Т)=1.
  2. В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т):   А +C= G + Т или (А +C)/(G + Т)= 1
  3. Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1;  Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3).

При этом аденин образует пару только с тимином,  а  гуанин — с цитозином.

[attention type=green]

Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—Стремя.

[/attention]

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′.

В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Интересные факты о ДНК

  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации. При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК. [2]
  2. Международный день ДНК отмечается 25 апреля.

    Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот», где описали двойную спираль молекулы ДНК. [3]

Список литературы: Молекулярная биотехнология: принципы и применение, Б.

Глик, Дж. Пастернак, 2002 год
Б.Глик,
Дж. Пастернак,
Источник: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год
[2] MPlast.

by – портал: “ДНК 1 клетки человека вмещает 1,5 гигабайта информации – лучший винчестер на планете” – 27 апреля 2016 года
[3] Журнал NATURE: “Molecular Structure of Nucleic Acids” – 25 апреля 1953 года
Дата в источнике: 2002 год

Источник: https://mplast.by/encyklopedia/dnk-dezoksiribonukleinovaya-kislota/

В чем отличие днк от рнк?

Пентоза входящая в состав днк

Вопрос процесса осуществления передачи наследственной информации и биосинтеза белка издавна интересовал ученых. Только с возникновением молекулярной биологии и генетики многие тайны удалось открыть. В нашей статье мы рассмотрим особенности этих функциональных структур, а также отличие ДНК от РНК.

Что такое нуклеиновые кислоты

Если вы впервые столкнулись с данными аббревиатурами, то стоит познакомиться с их расшифровкой. ДНК – дезоксирибонуклеиновая кислота. Всем известно, что она охватывает информацию о генах клеток.

РНК – рибонуклеиновая кислота. Ее основной функцией является формирование белка. Это органическое вещество, являющееся основой всего живого. Однако это не все различие.

РНК от ДНК отличается не только лишь наименованиями и областями использования.

Вещества, о которых идет речь в нашей статье, называют нуклеиновыми кислотами. Больше всего их в ядерном матриксе, там они и были впервые найдены. С течением времени стало очевидным, что размещаются они в разных частях клеток. Пластиды разных видов, митохондрии, а также цитоплазма содержат эти вещества. Но название они получили от латинского слова “нуклеус”, что в переводе означает “ядро”.

Как и все органические вещества, нуклеиновые кислоты представляют собой природные естественные биополимеры. Это крупные макромолекулы, состоящие из определенного количества циклически повторяющихся одинаковых элементов – мономеров. К примеру, у сложных углеводов это моносахариды.

Структура мономеров

Нуклеотидами называют структурные повторяющиеся элементы РНК и ДНК, представленные тремя составными частями. Чем отличается РНК от ДНК? Всего лишь двумя компонентами мономеров. Но эта особенность определяет их различие не только в строении, в живых организмах они имеют разное функциональное предназначение.

Углевод пентоза

Прежде всего, ДНК от РНК отличается содержанием вида углевода. Простые сахара представляют собой вещества с определенным количеством элемента углерода в общей формуле. Состав нуклеиновых кислот представляют пентозы. Число углерода в них равно пяти. Они и называются поэтому пентозами.

В чем же здесь отличие, если число углерода и молекулярная формула абсолютно одинаковы? Все очень просто: в структурной организации. Такие вещества с одинаковым составом и молекулярной формулой, имеющие отличия в строении и характерных свойствах, в химии именуются изомерами.

Моносахарид рибоза – часть РНК. Этот признак явился определяющим для наименований этих биополимеров. Моносахарид, характерный для ДНК, называется дезоксирибозой.

Азотистые основания

Рассмотрим еще одно различие молекул ДНК и РНК. Оно также влияет на свойства данных веществ. В структуру мономеров ДНК входит один из четырех остатков азотистых оснований: аденин, гуанин, цитозин, тимин. Размещаются они согласно определенному правилу.

В молекуле ДНК, которая состоит из двух спирально закрученных цепей, напротив аденилового основания всегда находится тимидиловый, а гуаниловому соответствует цитидиловый. Это правило называется принципом комплементарности. Между аденином и гуанином всегда образуются две, а между гуанином и цитозином – три водородные связи.

Совсем по-другому обстоит дело с рибонуклеиновой кислотой. Вместо тимина в ее состав входит другое азотистое основание. Оно называется урацил. Стоит сказать, что, по сравнению с ДНК, РНК существенно меньших размеров, поскольку состоит из одной спиральной молекулы.

Отличие ДНК от РНК: таблица

Главные признаки, представляющие отличие молекул ДНК от РНК, представлены в нашей сравнительной таблице.

Признаки сравненияДНКРНК
Количество цепочек полимера21
Вид моносахарида пентозыДезоксирибозаРибоза
Разновидности азотистых оснований

Аденин

Гуанин

Цитозин

Тимин

Аденин

Гуанин

Цитозин

Урацил

Место нахождения в клеткеЯдерный аппарат эукариотов, нуклеотид прокариотов, пластиды хлоропласты, митохондрииРибосомы, цитоплазма
ФункцииПроцесс передачи и сохранности генетической информацииФормирование белковых молекул, реализация генетического материала

Как видите, отличие ДНК от РНК заключается не только в особенностях структуры, их строение обусловливает различные функции, необходимые всем живым организмам.

Типы РНК

Науке известно три типа рибонуклеиновой кислоты. Транспортная РНК образуется на ДНК, а потом передвигается в цитоплазму. Самыми маленькими по размерам являются именно эти молекулы. Они присоединяют аминокислоты, являющиеся мономерами белка, после чего транспортируют их к месту сборки макромолекул.

Пространственная структура транспортной РНК по форме похожа на лист клевера. Следующий вид данной нуклеиновой кислоты выполняет функцию передачи сведений о структуре будущего белка из ядра клеток к специализированным структурам. Ими являются рибосомы. Эти специализированные органеллы располагаются на поверхности эндоплазматической сети.

А разновидность РНК, выполняющих эту функцию, называется информационной.

Существует и третья группа – это рибосомальные РНК, расположенные на участках соответствующих органелл. Они способны формировать пространственное расположение необходимых молекул во время формирования белковых молекул. Но в целом все три вида данных макромолекул взаимодействуют между собой, выполняя единую функцию.

Черты сходства ДНК и РНК

Чем отличается РНК от ДНК, мы уже практически выяснили. Но поскольку эти вещества объединены в одну группу, среди них наблюдаются и единые черты. Основное из них заключается в том, что они являются полинуклеотидами.

Так, в состав ДНК входит от нескольких десятков тысяч до миллионов мономеров. РНК не может похвастаться таким количеством, ее образуют до десяти тысяч нуклеотидов.

Однако все мономеры нуклеиновых кислот имеют сходный общий план строения, что позволяет им участвовать в осуществлении процессов биосинтеза белка.

Функциональное отличие ДНК от РНК

Различие ДНК и РНК характерными чертами и особенностями строения не ограничивается. Например, ДНК способна к денатурации, ренатурации и деструкции. Ее суть – в раскручивании молекул до определенного состояния и обратно, если это возможно. В ходе этих процессов наблюдается разрушение водородных связей.

Основной функцией ДНК является сохранение, шифровка, передача и проявление генетической информации, осуществляющиеся в ходе размножения организмов всех уровней организации. Это органическое вещество также способно к транскрипции. Суть этого явления заключается в образовании молекул РНК на основе ДНК.

Его основой является принцип комплементарности. Молекула ДНК также способна к самоудвоению или репликации. Этот процесс очень важен для нормального хода деления клеток, особенно митоза, когда из клетки с двойным хромосомным набором образуются две идентичные.

Функция РНК также важна для живых организмов, ведь без синтеза белка их существование просто невозможно.

[attention type=yellow]

ДНК и РНК – нуклеиновые кислоты, являющиеся сложными макромолекулами, состоящими из нуклеотидов. Главное различие данных веществ заключается в том, что в их состав входят разные виды азотистых оснований и углевода пентозы, что определяет их различные функции в клетках живых существ.

[/attention]

Источник: https://FB.ru/article/255828/v-chem-otlichie-dnk-ot-rnk

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: