Пептидная связь между аминокислотами образуется

Пептидная связь: образование, строение, свойства

Пептидная связь между аминокислотами образуется

  • Что такое пептидная связь?
  • Образование пептидной связи
  • Свойства пептидной связи
  • Строение пептидной связи
  • Методы определения пептидных связей
  • Рекомендованная литература и полезные ссылки
  • Пептидная связь, видео
  • Именно пептидная связь является основой построения всех белковых молекул, из которых, в конечном счете, образуется вся живая материя. Особенности строения пептидной связи, ее структура оказали огромное влияние на саму возможность существования жизни на нашей планете. О том, что такое пептидная связь, как она образуется и какими свойствами обладает, читайте дальше.

    Что такое пептидная связь?

    Пептидная связь это связь, возникающая между аминокислотами при взаимодействии аминогруппы (-NH2) и карбоксильной группы (-COOH). Две соединенные одна с другой кислоты образуют дипептид, три – трипепетид и так далее. Длинные цепи подобного рода зовутся полипептидами и белками.

    Также академическое определение пептидной связи звучит так: пептидная связь – это вид химической связи, возникающей вследствие взаимодействия α-аминогруппы одной аминокислоты и α-карбоксигруппы другой аминокислоты.

    Само же слово «пептид» происходит от греческого «питательный» и означает семейство веществ, молекулы которых построены из двух или более остатков аминокислот, соединенных в цепь пептидными связями —C(O)NH—.

    Образование пептидной связи

    Как образуется пептидная связь? Образование пептидной связи происходит внутри клеток на рибосомах при активном участии ферментов с затратой энергии. Аминокислоты при этом, будучи мономерами, играют роль таких себе строительных блоков белков. Для синтеза белка живыми организмами используется 20 видов различных аминокислот.

    Что же касается самого процесса образования пептидной связи между аминокислотами, то она образуется при оттягивании электронной плотности с атома водорода аминогруппы одной аминокислоты и атомом кислорода карбоксильной группы другой аминокислоты.

    Вот так процесс образования пептидной связи в молекуле выглядит схематически.

    Как следствие разрываются соединения между N и H в аминогруппе и между C и OH в карбоксильной группе. Соединение протона и гидроксильной группы в результате образует воду, а два аминокислотных остатка – дипептид.

    Свойства пептидной связи

    Пептидная связь, которая имеет место при первичной структуре белков, не является полностью одинарной. Длина ее равна 0,132 нм. Это среднее значение между истинной двойной и одинарной связями.

    Важными свойствами пептидной связи являются копланарность и трансположение, далее подробно их поясним.

    [attention type=yellow]

    Копланарность означает, что все атомы, входящие в пептидную группу находятся на одной плоскости, а атомы H и О располагаются по разные стороны от пептидной связи. Но стоит заметить, что радикальные группы аминокислот и водорода при α-углеродах лежат за пределами плоскости.

    [/attention]

    Трансположение означает, что кислород и водород пептидной связи находятся в транс-ориентации. Также в транс-ориентации ориентированы аминокислотные R-группы во всех белковых и пептидных молекулах естественного происхождения.

    Строение пептидной связи

    В чем особенности строения пептидной связи? В амидной группе –CO-NH- углеродный атом существует в форме sp2-гибридизации. К примеру, электронная пара атома азота сопрягается с π-электронами двойной связи между углеродом и кислородом. Тогда электронная плотность пептидной группы сместится к кислороду. В результате подобного сопряжения выровняются длины связей внутри радикала.

    Структура подобной пептидной связи и формула отражена на картинке.

    Методы определения пептидных связей

    Наилучшим методом для определения пептидных связей является биуретовая реакция. Такое название она имеет потому, что впервые эта реакция была использована для получения биурета, который хотя и не является аминокислотой, но обладает при этом двумя пептидными связями.

    Сам механизм определения сводится к тому, что аминокислоты, способные образовать как минимум две пептидные связи в щелочной среде при добавлении сульфата меди образуют медьсодержащее комплексное соединение фиолетового цвета.

    Рекомендованная литература и полезные ссылки

    • Nomenclature and Symbolism for Amino Acids and Peptides. Recommendations 1983″. European Journal of Biochemistry. 138 (1): 9–37. 1984. doi:10.1111/j.1432-1033.1984.tb07877.x. ISSN 0014-2956.
    • Muller, P (1994-01-01). “Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)”. Pure and Applied Chemistry. 66 (5): 1077–1184. doi:10.1351/pac199466051077. ISSN 1365-3075.
    • Watson J, Hopkins N, Roberts J, Agetsinger Steitz J, Weiner A (1987) [1965]. Molecualar Biology of the Gene (hardcover) (Fourth ed.). Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc. p. 168. ISBN 978-0805396140.
    • Miller BR, Gulick AM (2016). “Structural Biology of Nonribosomal Peptide Synthetases”. Methods in Molecular Biology. 1401: 3–29. doi:10.1007/978-1-4939-3375-4_1. ISBN 978-1-4939-3373-0. PMC 4760355. PMID 26831698.
    • Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000). Protein synthesis. An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 978-0716735205.

    Пептидная связь, видео

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/himiya/peptidnaya-svyaz/

    Пептидная связь

    Пептидная связь между аминокислотами образуется

    › Наша Википедия › Пептидные связи

    Пептидная связь — это химическая связь, возникающая между двумя молекулами в результате реакции конденсации между карбоксильной группой (-СООН) одной молекулы и аминогруппой (-NH2) другой молекулы, при выделении одной молекулы воды (H2O).

    Молекула, содержащая пептидную связь, называется амидом.

    Четырехатомная функциональная группа –C(=O)NH– называется амидной группой или, когда речь идет о белках, пептидной.

    Пептидные связи чаще всего встречаются в природе в составе пептидов [1] и белков [2], соединяющих между собой остатки аминокислот [3]. Пептидные связи также является основой пептидной нуклеиновой кислоты (ПНА). Полиамиды, такие как нейлон и арамид, являются синтетическими молекулами (полимерами), которые также содержат пептидные связи.

    Резонансные формы пептидных связей

    В 1930-1940-х годах Лайнус Карл Полинг (Linus Carl Pauling) и Роберт Кори (Robert Brainard Corey) проводили рентгеноструктурный анализ нескольких аминокислот и дипептидов.

    Им удалось выяснить, что пептидная группа имеет жесткую планарную структуру, в которой шесть атомов лежат в одной плоскости: 5,-атом углерода и C=O группа первой аминокислоты, и N-H группа и 5,-атом углерода второй аминокислоты.

    Полинг объяснил данный факт существованием двух резонансных форм пептидной группы, на что указывала меньшая длина C-N связи в пептидной группе (133 пм), в сравнении с той же связью у простых аминов (149 пм). Вследствие частичного разделения электронной пары между карбонильным кислородом и амидным азотом, пептидная связь на 40% имеет двойные свойства.

    Резонансные формы типичной пептидной группы. Незаряженная единичная форма (около 60%) показана слева, заряженная двойная форма (около 40%) справа.

    В пептидных группах вращения вокруг C-N связи не происходит вследствие ее частичной двойственности. Вращение возможно только вокруг связей С—С5, и N—С5,. В результате остов пептида может быть представлен в виде серии полей, разделенных совместными точками вращения (С5, атомы). Данная структура ограничивает количество возможных конформаций [6] пептидных цепей.

    Кроме того, эффект резонанса стабилизирует группу, добавляя энергию примерно 84 ккал / моль, что делает ее менее химически активной, в сравнении с подобными группам (например, эфирами).

    Данная группа не имеет заряда с точки зрения физиологических значений pH, однако вследствие существования двух резонансных форм, карбонильный кислород несет частично отрицательный заряд, а амидный азот – частично положительный.

    Таким образом, возникает диполь с дипольным моментом, около 3,5 Дебай (0,7 электрон-ангстрем). Указанные дипольные моменты могут ориентироваться параллельно в определенных типах вторичной структуры (например 5,-спирали).

    Конфигурации пептидной связи

    Для планарной пептидной связи возможны две конфигурации:

    1. Транс-конфигурация,
    2. Цис-конфигурация.

    В транс-конфигурации 5,-атомы углерода и боковые цепи расположены по разные стороны пептидной связи, в то время как в цис-конфигурации – с одной и той же. «Транс» – форма пептидных связей значительно более широко распространена (встречаясь в 99,6% случаев), нежели «цис», из-за того, что в последнем случае велика вероятность пространственного столкновения между боковыми группами аминокислот.

    Исключением является аминокислота пролин [7], если она будет соединена через аминогруппу с какой-либо другой аминокислотой. Пролин – единственная из протеиногенных аминокислот, содержащих около C5, не первоначальную, а вторичную аминогруппу.

    В ней атом азота связан с двумя атомами углерода, а не с одним, как у других аминокислот. У пролина, включенного в пептид, заместители при атоме азота отличаются не так сильно, как в других аминокислотах.

    [attention type=red]

    Поэтому разница между «транс» и «цис» конфигурациями весьма незначительна, ни одна из них не имеет энергетического преимущества.

    [/attention]

    Конформация пептида определяется тремя двугранными углами, отражающими вращения вокруг трех последовательных связей в пептидной остове: `8, (пси) – вокруг C5,1—С, `9, (омега) – вокруг С-N, и `6, (фи) – вокруг N—С5,2.

    Вращения вокруг собственно пептидной связи не происходит, так как `9, угол всегда имеет значение около 180 ° у транс-конфигурации, и 0 °, – у значительно более редкой цис-конфигурации.

    Поскольку связи N—С5,2 и C5,1—С по обе стороны от пептидной являются обычными одинарными связями, вращения вокруг них неограниченно, в результате чего пептидные цепи могут принимать самые разнообразные пространственные конформации. Однако возможны далеко не все комбинации двугранных углов, при некоторых из них происходит пространственное столкновения атомов. Допустимые значения визуализируют на двухмерном графике, именующемся диаграммой Рамахандрана.

    Примечания

    Примечания и пояснения к статье «Пептидная связь».

    При написании статьи о пептидных связях, в качестве источников, использовались материалы информационных и медицинских интернет-порталов, сайтов новостей Nature.com, ScienceDaily.com, Википедия, а также следующие печатные издания:

    • Валькович Э. И. «Общая и медицинская эмбриология: учебное пособие для медицинских вузов». Издательство «Фолиант», 2003 год, Санкт-Петербург,
    • Лебедев А. Т., Артеменко К. А., Самгина Т. Ю. «Основы масс-спектрометрии белков и пептидов». Издательство «Техносфера», 2012 год, Москва.

    Источник: http://MoiTabletki.ru/peptide-bond.html

    Процесс образования пептидной связи из аминокислот

    Пептидная связь между аминокислотами образуется

    Cодержание:

    • О пользе
    • Структура
    • Цены и где купить аминокислоты
    • Вывод

    Польза аминокислот при силовых тренировках. Четыре группы, отражающие формирование структуры молекулы белка.

    Белок представляет собой полимерную молекулу, в которой есть группа мономеров (то есть мелких элементов) — аминокислот.

    От того, какие аминокислоты формируют состав белка, а также от их чередования, зависят свойства и действие последнего. Всего в организме человека можно найти двадцать аминокислот, которые в различных сочетаниях встречаются в различном по своей конструкции белке.

    Условно все компоненты белковой молекулы можно рассматривать в качестве букв алфавита, на которых зафиксирован определенный объем информации.

    Только слово может свидетельствовать о каком-либо предмете или действии, а набор аминокислот – о функции конкретного белка, его возможностях и эффективности работы.

    О пользе

    Об особенностях и преимуществах столь полезных элементов написано сотни статей и книг. Почему бы и нет, ведь они действительно формируют наш организм, являются составляющими элементами белка и помогают развиваться во всех отношениях. К основным свойствам можно отнести:

    • ускорение синтеза белка. Наличие в организме полного комплекса аминокислот способствует стимуляции выработки инсулина и активации mTor. Вместе эти механизмы способствуют запуску роста мышечной массы;
    • источник энергии. Такие компоненты проходят по другому пути метаболизма и по своей функции отличаются от углеводов. В итоге организм получает большие объемы энергии и заполняется аминокислотным пулом. Итог – мышцы растут намного быстрее;
    • подавление катаболических процессов. С их помощью можно навсегда забыть, что такое разрушение собственных мышц, ведь в организме всегда будет материал для построения новых белковых молекул;
    • снижение жира. Полезная функция – помощь в образовании лептина, который способствует максимально быстрому сжиганию жировых отложений. Все это позволяет добиться максимального эффекта.

    К полезным действиям аминокислотных групп можно также отнести участие в обмене азота в организме, восстановление поврежденных тканевых участков, обеспечение метаболических процессов, полноценное восстановление мышц, снижение уровня сахара в крови.

    Кроме этого, к полезным действиям можно отнести стимуляцию гормона роста, повышение выносливости, обеспечение организма необходимым объемом энергии, нормализацию обменных процессов, стимуляцию иммунной системы, нормализацию пищеварительного процесса, защиту от радиации и так далее.

    Структура

    Химики выделяют четыре основные группы, которые отображают суть структурного формирования молекулы столь необходимого и важного для человеческого организма компонента. Таких группы всего четыре и у каждой из них есть свои особенности формирования – первичная, вторичная, третичная и четвертичная. Рассмотрим эти нюансы более подробно:

    1. Первичная структура – линейная цепочка, в основе которой лежит полипептидная связь аминокислот. В ней преобладает самый простой уровень организации белка. При этом максимальную стабильность и устойчивость обеспечивает ковалентная пептидная связь, формирующаяся между альфа-аминогруппой какого-то одного компонента и альфа-карбоксильной группой другого. Если же образование такой цепи происходит при участии гидроксипролина и пролина, то и вид будет иной.В период формирования пептидной связи в клетках сначала происходит активации карбоксильной группы, после чего происходит соединение с одной из аминокислот другой группы. Сама пептидная связь – это лишь дублирующийся элемент полипептидной цепочки. У нее есть ряд отличительных черт, которые оказывают влияние не только на образование первичной формулы с участием аминокислоты, но и на более высокие уровни организации цепи.

      Но есть исключения. В частности к таковым можно отнести связи пептидной группы при участии групп аминокислот гидроксипролина и пролина. Их отличительная особенность – образование исключительно водородной связи, что часто сказывается на вторичных структурных особенностях самого белка.

    2. Вторичная структура – это особая методика укладки полипептидной цепи и связи аминокислоты в одну особую «сеть». Все это становится возможным благодаря формированию водородной связи между пептидной группой каждой из цепей. При этом по своим параметрам вторичные вариации могут быть спиральными или слоисто-складчатыми.
      Альфа-спираль – это один из видов вторичной структуры белковой молекулы, образование которой происходит с помощью межпептидной водородной связи в границах какой-то одной пептидной цепи аминокислот. Второй вид (бета-структура) также считается одной из разновидностей вторичного структурного элемента. По своей сути это образование – изогнутая по своей форме полипептидная цепочка, которая сформирована с помощью мощных водородных связей, но в границах какой-то одной или смежной полипептидной цепочке.
    3. Третичная «формула» представляет собой аминокислоты, полипептидные цепи которых по особому типу укладываются в пространстве. При этом белковые молекулы в данном случае можно условно разделить на фибриллярные и глобулярные. Вторые имеют вид эллипса, а первые – нити (они вытянуты, как веретено или палочка).
      Большое значение в формировании такой структуры имеют связи между боковыми радикалами, которые объединяют аминокислоты. Их задача — обеспечить образование самой формы. По своей сути такие связи могут быть сильными (ковалентными) или слабыми (полярными).
    4. Белки, которые формируются только из одной полипептидной цепочки, отличаются исключительно третичной структурой. К примеру, к ним можно отнести миоглобин. Данный вид представляет собой составляющий элемент мышечной ткани, который принимает участие в образование кислорода. В его основе состоят различные аминокислоты и ферменты (к примеру, пепсин, лизоцим, трипсин и прочие).
      Есть также белки, которые строятся из нескольких цепей аминокислот третичной структуры. Подобное образование, как правило, считается четверичным. Его суть – формирование из целого ряда полипептидных цепочек, имеющих третичную форму. При этом особенность в том, что аминокислоты сохраняют свои позиции (пептидные связи остаются неизменными).

    Вывод

    Вот мы вкратце и рассмотрели, как аминокислоты формируют столь необходимый человеку элемент.

    18 августа 2015

    Источник: https://Proteinfo.ru/baza-znanij/aminokisloty/peptidnaya-svyaz/

    Лечимся дома
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: