Первая стадия клеточного дыхания

Содержание
  1. Цикл Кребса – кратко и понятно суть, схема и реакции
  2. Клеточное дыхание
  3. Описание процесса
  4. Начальные этапы
  5. Замыкание цикла
  6. Значение и функции
  7. Клеточное дыхание
  8. Биологическое окисление
  9. Анаэробное дыхание
  10. Где происходят два первых этапа клеточного дыхания — От Земли до Неба
  11. Использование различных начальных субстратов
  12. Гликолиз
  13. Окислительное декарбоксилирование пирувата
  14. β-окисление жирных кислот
  15. Цикл трикарбоновых кислот
  16. Окислительное фосфорилирование
  17. Анаэробное дыхание
  18. Общее уравнение дыхания, баланс АТФ
  19. Фотосинтез: где и как это происходит?
  20. Строение хлоропласта
  21. Этапы
  22. Подготовительный этап
  23. Гликолиз
  24. Окисление
  25. Структура митохондрий
  26. Происхождение двухмембранных органоидов
  27. Использование различных начальных субстратов
  28. Окислительное декарбоксилирование пирувата
  29. β-окисление жирных кислот
  30. Цикл трикарбоновых кислот
  31. Окислительное фосфорилирование
  32. Общее уравнение дыхания, баланс АТФ
  33. Клеточное дыхание и фотосинтез. Аэробное клеточное дыхание

Цикл Кребса – кратко и понятно суть, схема и реакции

Первая стадия клеточного дыхания

Биологическая роль некоторых реакций цикла Кребса (ЦК) была изучена американским биохимиком венгерского происхождения Альбертом Сент-Дьердьи. В частности, он выделил ключевой компонент ЦТК — фумарат. Исследования в этом направлении продолжил Ганс Кребс.

В итоге он установил всю последовательность реакций и соединений, образующиеся на всех этапах процесса. Ученый не смог определить, с преобразования какой кислоты начинается цикл — лимонной или изолимонной. Сейчас известно, что это лимонная кислота.

Поэтому ЦК называют также цитратным или циклом лимонной кислоты.

Позднее американец Альберт Ленинджер, занимающийся биоэнергетикой, определил, что все реакции ЦК протекают в митохондриях клеток. С получением доступа к изотопам углерода появилась возможность более досконального изучения и уточнения данных о промежуточных соединениях на разных этапах цикла.

С пищей в организм поступают три основные группы сложных биохимических соединений — белки, жиры и углеводы. Они являются первичными метаболитами, потому что участвуют в обмене веществ или в метаболизме.

Этот процесс происходит между любыми живыми клетками и окружающей средой непрерывно. Суть цикла Кребса заключается в том, что он является областью схождения двух путей метаболизма.

Это следующие процессы:

  • катаболизм, при котором происходит распад более сложных веществ на простые, в частности, глюкозы на моносахариды;
  • анаболизм — синтез сложных веществ из простых, например, белков из аминокислот.

После попадания в пищеварительную систему сложные вещества расщепляются под действием ферментов на более простые, которые внутри клеток превращаются сначала в пируват (пировиноградную кислоту), а затем — в ацетильный остаток. Все эти преобразования можно назвать подготовкой к ЦК, а образование остатка — его запуском или начальным этапом.

Дальнейшие стадии цикла трикарбоновых кислот являются частью катаболизма. Процесс идет каскадно. Каждый предыдущий этап запускает последующий, а промежуточные продукты химических реакций служат не только для продолжения цикла, но и при определенных потребностях организма могут пополнять запасы веществ, необходимых для синтеза новых соединений (анаболизма).

Клеточное дыхание

Для нормальной жизнедеятельности живым клеткам постоянно требуется энергия. Ее главный универсальный источник — аденозинтрифосфат (АТФ), способный встраиваться в белки организма напрямую.

Это соединение получается в результате ряда реакций окисления, носящих общее название «клеточное дыхание».

При этом происходит постепенный распад органических веществ вплоть до простейших неорганических — углекислого газа CO2 и воды H2O.

Структурное строение молекул АТФ содержит фосфорангидридные связи, которые имеют свойство накапливать высвобожденную при прохождении реакций клеточного дыхания энергию, поэтому называются макроэргическими.

[attention type=yellow]

Так создаются энергетические запасы клеток, которые могут высвобождается при необходимости разрывом этих связей.

[/attention]

Процесс синтеза АТФ и класса вспомогательных соединений включает три этапа:

  1. Гликолиз происходит в цитоплазме.
  2. В матриксе митохондрий проходят все химические реакции цикла Кребса.
  3. Окислительное фосфорилирование на внутренней мембране митохондрий.

Преобразование аденозиндифосфата (АДФ) в АТФ характерно для всех этапов. Но наибольшее суммарное количество молекул с макроэргическими связями образуется при фосфорилировании. Это не значит, что процессы гликолиза и ЦК менее важны. Многие соединения, образующиеся во время их протекания, участвуют в регуляции клеточного дыхания.

Описание процесса

Протекание ЦК достаточно экономно с точки зрения энергозатрат. Такой эффект достигается благодаря тому, что он связывает два метаболических направления.

В процесс вовлекаются вещества, подлежащие утилизации, которые либо служат энергетическим «топливом», либо возвращаются в круг анаболизма.

Подготовительная стадия ЦК заключается в распаде глюкозы, аминокислот и жирных кислот на молекулы пирувата или лактата.

Органеллы митохондрий способны преобразовывать пируват в ацетильный остаток (ацетил-коэнзим А или ацетил-КоА), представляющий собой вместе с тиольной группой, которая может его переносить, кофермент А. Некоторое соединения могут сразу распадаться до ацетил-КоА, минуя стадию пирувата. При этом пировиноградная кислота может вовлекаться непосредственно в ЦК, не преобразуясь в ацетил-КоА.

Начальные этапы

Первая стадия необратима и состоит из конденсации ацетил-КоА с четырехуглеродным веществом — оксалоацетатом (щавелевоуксусной кислотой или ЩУК), что приводит к образованию шестиуглеродного цитрата (лимонной кислоты). Во время реакции метильная группа ацетил-КоА соединяется с карбонильной группой ЩУК. Благодаря быстрому гидролизу промежуточного соединения цитроил-КоА этот этап проходит без затрат энергии извне.

На второй стадии образуется изоцитрат (изолимонная кислота) из цитрата через цис-аконитат. Это реакция обратимой изомеризации через образование промежуточной трикарбоновой кислоты, в которой катализатором выступает фермент аконитатгидратаза.

Далее происходит дегидрирование и декарбоксилирование изоцитрата до промежуточного соединения оксалосукцинат с выделением углекислого газа.

После декарбоксилирования оксалосукцината образуется енольное соединение, которое перестраивается и превращается в пятиуглеродную кислоту — α-кетоглутарат (оксоглутарата), чем и завершает третью ступень ЦК.

Четвертый этап — α-кетоглутарат декарбоксилирует и реагирует с ацетил-КоА. При этом получается сукцинил-КоА, соединение янтарной кислоты и коэнзима-А, выделяется СО2.

Замыкание цикла

На пятой стадии сукцинил-КоА преобразуется в сукцинат (янтарную кислоту). Для этого этапа характерно субстратное фосфолирование, подобное синтезу АТФ при гликолизе.

Введение в ЦК фосфорной группы РО3 становится возможным благодаря присутствию фермента ГДФ (гуанозиндифосфата) или АДФ (аденозиндифосфата), которые в процессе синтеза сукцината из дифосфатов становятся трифосфатами.

[attention type=red]

Начиная с шестой стадии, цикл начинает постепенно замыкаться. Сначала сукцинат под действием каталитического фермента сукцинатдегидрогеназы дегидрирует до фумарата. Дальнейшее дигидрирование приводит к седьмому этапу — образованию L-малата (яблочной кислоты) из фуратата через переходное соединение с карбанионом.

[/attention]

Последняя реакция цикла трикарбоновых кислот малат окисляется до щавелевоуксусной кислоты. Первая стадия следующего ЦК начинается с новой молекулы ацетил-КоА.

Значение и функции

Этот восьмиэтапный циклический процесс, итогом которого является окисление ацетильного остатка до углекислого газа, может показаться излишне сложным. Тем не менее, он имеет огромное значение в метаболизме промежуточных реакций и выполняет ряд функций. К ним относятся:

  • энергетическая;
  • анаболическая;
  • катаболическая;
  • транспортная.

Цикл Кребса участвуют в катаболизме жиров и углеводов.

Соединения, образующиеся на разных стадиях процесса, участвуют в синтезе многих необходимых для организма веществ — глутамина, порфиринов, глицина, фенилаланина, цистеина и других.

Когда промежуточные продукты покидают ЦК для участия в синтезе, происходит их замещение с помощью так называемых анаплеротических реакций, которые катализируются регуляторными ферментами, например, пируваткарбоксилазой.

Транспортная функция ЦК заключается в содействии гликолизу.

Глюкозу невозможно превратить сразу в АТФ, поэтому механизм гликолиза действует поэтапно и сопровождается постоянным перемещением атомов и катионов водорода от одних соединений к другим.

Для их транспортировки нужны специальные соединения, которые получаются на одной из стадий ЦТК. Участвующие в гликолизе коферменты цикла Кребса:

  • НАД*H+(Никотинамидадениндинуклеотид с катионом водорода). Образуется на III стадии ЦК.
  • ФАД*H2 (Флавинадениндинуклеотид с молекулой водорода). Появляется на V стадии ЦК.

Реакции ЦК имеют и большое клиническое значение. Хотя для людей не свойственны мутации, связанные с генами ферментов, участвующих в цикле, однако их редкие проявления губительны для здоровья. Они могут приводить к опухолям мышц и почек, нарушениям работы нервной системы.

Существует множество видов визуального и слухового отображения цикла Кребса — схемы с формулами, уравнения химических реакций, разнообразные таблицы и даже мнемонические способы для полного запоминания его главных «участников».

Источник: https://nauka.club/biologiya/tsikl-krebsa.html

Клеточное дыхание

Первая стадия клеточного дыхания

Клеточное дыхание — это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы — гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим.

При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона — восстановление. Окисляемое вещество — это донор, а восстанавливаемое — акцептор водорода и электронов.

Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

[attention type=green]

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах.

[/attention]

Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции.

Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул АТФ — универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ.

Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки.

В то же время она служит для поддержания постоянной температуры тела.

Различные этапы клеточного дыхания у аэробных эукариот происходят

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C6H12O6 + 6H2O → 6CO2 + 12H2 + 4АТФ

[attention type=yellow]

Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ

[/attention]

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

Большинство анаэробов — это микроорганизмы. Однако к организмам, использующим анаэробное дыхание, относятся также дрожжи, ряд червей-паразитов. Способностью к анаэробному дыханию также обладают определенные ткани. Например, мышечные клетки, которые периодически могут испытывать недостаток кислорода.

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH3COCOOH (пируват) → CH3CHO (ацетальдегид) + CO2

CH3CHO + НАД · H2 → CH3CH2OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH3COCOOH + НАД · H2 → CH3CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

plustilino © 2019. All Rights Reserved

Источник: https://biology.su/molecular/cellular-respiration

Где происходят два первых этапа клеточного дыхания — От Земли до Неба

Первая стадия клеточного дыхания

По­яс­не­ние.

Энер­ге­ти­че­ский обмен преду­смат­ри­ва­ет рас­щеп­ле­ние ор­га­ни­че­ских ве­ществ и вы­сво­бож­де­ние энер­гии хи­ми­че­ских со­еди­не­ний и свя­зей. От­ме­че­но, что ее даль­ней­шее рас­пре­де­ле­ние осу­ществ­ля­ет­ся ча­стью в виде тепла. Дру­гая часть ре­зер­ви­ру­ет­ся в АТФ мо­ле­ку­лах. Пер­вая ста­дия — под­го­то­ви­тель­ная.

Энер­ге­ти­че­ский обмен на­чи­на­ет­ся с про­ник­но­ве­ния пищи в ор­га­низм че­ло­ве­ка или жи­вот­но­го в форме слож­ных вы­со­ко­мо­ле­ку­ляр­ных эле­мен­тов. Перед тем как про­ник­нуть в ткани и клет­ки, про­ис­хо­дит раз­ру­ше­ние этих со­еди­не­ний до низ­ко­мо­ле­ку­ляр­ных.

д­ро­ли­ти­че­ское рас­щеп­ле­ние ор­га­ни­че­ских ве­ществ осу­ществ­ля­ет­ся с уча­сти­ем воды. Этот про­цесс про­хо­дит в пи­ще­ва­ри­тель­ном трак­те (у мно­го­кле­точ­ных), на кле­точ­ном уров­не (в ли­зо­со­мах), в пи­ще­ва­ри­тель­ных ва­ку­о­лях (у од­но­кле­точ­ных) под воз­дей­стви­ем опре­де­лен­ных фер­мен­тов.

На вто­рой ста­дии энер­ге­ти­че­ский обмен пред­став­ля­ет собой бес­кис­ло­род­ное окис­ле­ние. Про­цес­сы при этом про­ис­хо­дят без уча­стия кис­ло­ро­да, на кле­точ­ном уров­не, в кле­точ­ной ци­то­плаз­ме. Одним из клю­че­вых эле­мен­тов, обес­пе­чи­ва­ю­щих энер­ге­ти­че­ский обмен, яв­ля­ет­ся глю­ко­за.

Про­чие ор­га­ни­че­ские со­еди­не­ния (ами­но­кис­ло­ты, гли­це­рин, жир­ные кис­ло­ты) вклю­ча­ют­ся в про­цесс ее пре­вра­ще­ния на раз­лич­ных ста­ди­ях. Бес­кис­ло­род­ное, не­пол­ное окис­ле­ние глю­ко­зы на­зы­ва­ют гли­ко­ли­зом.

ре­зуль­та­те гли­ко­ли­за одной мо­ле­ку­лы глю­ко­зы об­ра­зу­ет­ся по две мо­ле­ку­лы пи­ро­ви­но­град­ной кис­ло­ты (ПВК, пи­ру­ват) CH3COCOOH, АТФ и воды, а также атомы во­до­ро­да, ко­то­рые свя­зы­ва­ют­ся мо­ле­ку­лой-пе­ре­нос­чи­ком НАД+ и за­па­са­ют­ся в виде НАД · H. Сум­мар­ная фор­му­ла гли­ко­ли­за имеет сле­ду­ю­щий вид:

C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3H4O3 + 2H2O + 2АТФ + 2НАД · H

Вы­де­ля­ю­ща­я­ся таким об­ра­зом при рас­щеп­ле­нии глю­ко­зы, энер­гия ча­стич­но ре­зер­ви­ру­ет­ся, а ча­стич­но вы­де­ля­ет­ся в форме тепла.

На тре­тьем этапе про­ис­хо­дит ды­ха­ние (био­ло­ги­че­ское окис­ле­ние — окис­ли­тель­ное фос­фо­ри­ли­ро­ва­ние). Дан­ная ста­дия воз­мож­на толь­ко под воз­дей­стви­ем кис­ло­ро­да.

[attention type=red]

В связи с этим она на­зы­ва­ет­ся кис­ло­род­ной. Про­те­ка­ет этот про­цесс в ми­то­хон­дри­ях.

[/attention]

1) бес­кис­ло­род­ный этап: В) об­ра­зо­ва­ние пи­ро­ви­но­град­ной кис­ло­ты; Г) рас­щеп­ле­ние ше­сти­уг­ле­род­но­го са­ха­ра; Д) ак­ти­ва­ция глю­ко­зы с за­тра­той АТФ

2) кис­ло­род­ный этап: А) окис­ли­тель­ное фос­фо­ри­ли­ро­ва­ние; Б) транс­порт элек­тро­нов по цепи пе­ре­нос­чи­ков; Е) цикл три­кар­бо­но­вых кис­лот

Ответ: 221112

Источник: bio-ege.sdamgia.ru

Использование различных начальных субстратов

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз — путь ферментативного расщепления глюкозы — является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением. Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода.

iv>

Первый его этап протекает с расходом энергии 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата.

На втором этапе происходит НАД-зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием, то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ.

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД+ + 4АДФ + 2АТФ + 2Фн = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H2O + 4Н+.

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 4Н+.

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид, который вместе с Кофермент А образует Ацетил-КоА. Реакция сопровождается восстановлением НАД до НАД∙Н.

У эукариот процесс протекает в матриксе митохондрий.

β-окисление жирных кислот

Деградация жирных кислот (у некоторых организмов также алканов) происходит у эукариот в матриксе митохондрий. Суть этого процесса заключается в следующем. На первой стадии к жирной кислоте присоединяется кофермент А с образованием ацил-KoA.

Он дегидрируется с последовательным переносом восстановительных эквивалентов на убихинон дыхательной ЭТЦ. На второй стадии происходит гидратирование по двойной связи С=С, после чего на третьей стадии происходит окисление полученной гидроксильной группы.

В ходе этой реакции восстанавливается НАД.

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Ацетил-КоА под действием цитратсинтазы передаёт ацетильную группу оксалоацетату с образованием лимонной кислоты, которая поcтупает в цикл трикарбоновых кислот (цикл Кребса).

В ходе одного оборота цикла лимонная кислота несколько раз дегидрируется и дважды декарбоксилируется с регенерацией оксалоацетата и образованием одной молекулы ГТФ (способом субстратного фосфорилирования), трёх НАДН и ФАДН2.

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД+ + ФАД + ГДФ + Фн + 2H2O + КоА-SH = 2КоА-SH + 3НАДH + 3H+ + ФАДН2 + ГТФ + 2CO2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Окислительное фосфорилирование

>

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д..

Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей.

Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН2 — 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород.

Анаэробное дыхание

Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо, нитрат- или сульфат-анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям, которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа.

Денитрификация — один из типов анаэробного дыхания — является одним из источников парниковых газов, железобактерии принимают участие в образовании железомарганцевых конкреций.

Среди эукариот анаэробное дыхание встречается у некоторых грибов, морских донных беспозвоночных, паразитических червей [1] и протистов — например, фораминифер [1].

Общее уравнение дыхания, баланс АТФ

СтадияВыход коферментаВыход АТФ (ГТФ)Способ получения АТФ

Первая фаза гликолиза−2Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза4Субстратное фосфорилирование
2 НАДН3 (5)Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата2 НАДН5Окислительное фосфорилирование
Цикл Кребса2Субстратное фосфорилирование
6 НАДН15Окислительное фосфорилирование
2 ФАДН23Окислительное фосфорилирование
Общий выход30 (32) АТФ[2]При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

Источник: dic.academic.ru

Фотосинтез: где и как это происходит?

Это химическая реакция, направленная на получение органических веществ из неорганических. Обязательным условием протекания фотосинтеза является присутствие солнечного света, так как его энергия выступает в роли катализатора.

Фотосинтез, характерный для растений, можно выразить следующим уравнением:

  • 6СО2 + 6Н2О = С6Н12О6 + 6О2.

То есть из шести молекул диоксида карбона и стольких же молекул воды в присутствии солнечного света растение может получить одну молекулу глюкозы и шесть кислорода.

Это самый простой пример фотосинтеза. Кроме глюкозы в растениях могут синтезироваться и другие, более сложные углеводы, а также органические вещества из других классов.

Вот пример выработки аминокислоты из неорганических соединений:

  • 6СО2 + 4Н2О + 2SO42- + 2NO3— + 6Н+ = 2C3H7O2NS + 13О2.

Как видим, из шести молекул диоксида углерода, четырех молекул воды, двух сульфат-ионов, двух нитрат-ионов и шести ионов водорода с использованием солнечной энергии можно получить две молекулы цистеина и тринадцать — кислорода.

Процесс фотосинтеза происходит в специальных органоидах – хлоропластах. В них содержится пигмент хлорофилл, который выступает в роли катализатора для химических реакций. Такие органоиды есть только в растительных клетках.

Строение хлоропласта

Это органоид, который обладает формой вытянутого шара. Размер хлоропласта обычно составляет 4-6 мкм, однако в клетках некоторых водорослей можно обнаружить гигантские пластиды – хроматофоры, размер которых достигает 50 мкм.

Этот органоид относится к двухмембранным. Он окружен внешней и внутренней оболочками. Они отделены друг от друга межмембранным пространством.

Внутренняя среда хлоропласта называется «строма». В ней находятся тилакоиды и ламеллы.

Тилакоиды – это плоские дискообразные мешочки из мембран, в которых находится хлорофилл. Именно здесь и происходит фотосинтез. Собираясь в стопки, тилакоиды образуют граны. Количество тилакоидов в гране может варьироваться от 3 до 50.

Ламеллы – это структуры, образованные мембранами. Они представляют собой сеть разветвленных каналов, основная функция которых – обеспечить связь между гранами.

В хлоропластах также содержатся свои рибосомы, необходимые для синтеза белков, и собственные ДНК и РНК. Кроме того, здесь могут находиться включения, состоящие из запасных питательных веществ, в основном крахмала.

Этапы

Клеточное дыхание проходит в три стадии:

  1. Подготовительный этап.
  2. Гликолиз (анаэробный процесс, не требует кислорода).
  3. Окисление (аэробный этап).

Подготовительный этап

Первый этап заключается в том, что сложные вещества в пищеварительной системе расщепляются на более простые. Таким образом, из белков получаются аминокислоты, из липидов – жирные кислоты и глицерин, из сложных углеводов – глюкоза. Эти соединения транспортируются в клетку, а затем – непосредственно в митохондрии.

Гликолиз

Он заключается в том, что под действием ферментов глюкоза расщепляется до пировиноградной кислоты и атомов водорода. При этом образуется АТФ (аденозинтрифосфорная кислота). Этот процесс можно выразить таким уравнением:

  • С6Н12О6 = 2С3Н3О3 + 4Н + 2АТФ.

Таким образом, в процессе гликолиза из одной молекулы глюкозы организм может получить две молекулы АТФ.

Окисление

На данном этапе образовавшаяся во время гликолиза пировиноградная кислота под действием ферментов реагирует с кислородом, в результате чего образуется углекислый газ и атомы водорода. Эти атомы затем транспортируются на кристы, где окисляются, образуя воду и 36 молекул АТФ.

Итак, в процессе клеточного дыхания в общей сложности образуется 38 молекул АТФ: 2 на втором этапе и 36 – на третьем. Аденозинтрифосфорная кислота и есть основной источник энергии, которым митохондрии снабжают клетку.

Структура митохондрий

Органоиды, в которых происходит дыхание, есть и в животных, и в растительных, и в грибных клетках. Они обладают шаровидной формой и размером около 1 микрона.

Митохондрии, как и хлоропласты, имеют две мембраны, разделенные межмембранным пространством. То, что находится внутри оболочек этого органоида, называется матриксом. В нем находятся рибосомы, митохондриальная ДНК (мтДНК) и мтРНК. В матриксе проходит гликолиз и первая стадия окисления.

Из внутренней мембраны формируются складки, похожие на гребни. Они называются кристами. Здесь проходит вторая стадия третьего этапа клеточного дыхания. Во время нее образуется больше всего молекул АТФ.

Происхождение двухмембранных органоидов

Учеными доказано, что структуры, которые обеспечивают фотосинтез и дыхание, появились в клетке путем симбиогенеза. То есть когда-то это были отдельные организмы. Этим объясняется то, что и в митохондриях, и в хлоропластах есть свои рибосомы, ДНК и РНК.

Источник: .ru

Источник: https://colibris62bethune.org/other/gde-proishodyat-dva-pervyh-etapa-kletochnogo-dyhaniya.html

Использование различных начальных субстратов

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид, который вместе с Кофермент А образует Ацетил-КоА. Реакция сопровождается восстановлением НАД до НАД∙Н.

У эукариот процесс протекает в матриксе митохондрий.

β-окисление жирных кислот

Основная статья: β-окисление

Деградация жирных кислот (у некоторых организмов также алканов) происходит у эукариот в матриксе митохондрий. Суть этого процесса заключается в следующем. На первой стадии к жирной кислоте присоединяется кофермент А с образованием ацил-KoA.

Он дегидрируется с последовательным переносом восстановительных эквивалентов на убихинон дыхательной ЭТЦ. На второй стадии происходит гидратирование по двойной связи С=С, после чего на третьей стадии происходит окисление полученной гидроксильной группы.

В ходе этой реакции восстанавливается НАД.

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Основная статья: Цикл трикарбоновых кислот

Ацетил-КоА под действием цитратсинтазы передаёт ацетильную группу оксалоацетату с образованием лимонной кислоты, которая поcтупает в цикл трикарбоновых кислот (цикл Кребса).

В ходе одного оборота цикла лимонная кислота несколько раз дегидрируется и дважды декарбоксилируется с регенерацией оксалоацетата и образованием одной молекулы ГТФ (способом субстратного фосфорилирования), трёх НАДН и ФАДН2.

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД+ + ФАД + ГДФ + Фн + 2H2O + КоА-SH = 2КоА-SH + 3НАДH + 3H+ + ФАДН2 + ГТФ + 2CO2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Окислительное фосфорилирование

Основные статьи: Окислительное фосфорилирование, Дыхательная электронтранспортная цепь, АТФ-синтаза

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д..

Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей.

Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса три молекулы АТФ, ФАДН2 — две.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород.

Общее уравнение дыхания, баланс АТФ

СтадияВыход коферментаВыход АТФ (ГТФ)Способ получения АТФ
Первая фаза гликолиза2Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза4Субстратное фосфорилирование
2 НАДН4Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии.
Декарбоксилирование пирувата2 НАДН6Окислительное фосфорилирование
Цикл Кребса2Субстратное фосфорилирование
6 НАДН18Окислительное фосфорилирование
2 ФАДН24Окислительное фосфорилирование
Общий выход38 АТФПри полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

Клеточное дыхание и фотосинтез. Аэробное клеточное дыхание

Первая стадия клеточного дыхания

Фотосинтез и дыхание – два процесса, лежащие в основе жизни. Они оба происходят в клетке. Первый – в растительных и некоторых бактериальных, второй – и в животных, и в растительных, и в грибных, и в бактериальных.

Можно сказать, что клеточное дыхание и фотосинтез – процессы, противоположные друг другу. Отчасти это правильно, так как при первом поглощается кислород и выделяется углекислый газ, а при втором – наоборот.

Однако эти два процесса некорректно даже сравнивать, поскольку они происходят в разных органоидах с использованием разных веществ.

Цели, для которых они нужны, тоже различны: фотосинтез необходим для получения питательных веществ, а клеточное дыхание – для выработки энергии.

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: