Пластиды схематический рисунок

Урок 2: Клеточное строение растений

Пластиды схематический рисунок

План урока:

Какие бывают клетки у растений?

Кто первым увидел клетку? Увеличительные приборы

Какие бывают увеличительные приборы?

Как устроена клетка растений?

Растения – клеточные организмы

Когда мы сравнивали растения с другими царствами живой природы, то выяснили, что они тоже состоят из клеток. Чтобы понимать, как живёт растение, важно познакомиться со строением этой его составной части. Наука о клетках называется цитологией. Сегодня мы тоже станем настоящими цитологами.

Какие бывают клетки у растений?

Мельчайшие растения – одноклеточные водоросли состоят из одной клетки. Их форма может быть очень разной – амёбоидной, веретёновидной, овальной, шарообразной, звездчатой. Она в виде гирьки, кустика с веером, диска, треугольников, бус – у одиночных и колониальных диатомовых водорослей, которые сверху прикрыты панцирем из диоксида кремния.

Диатомовые водоросли Источник 

Большинство многоклеточных зелёных, бурых или красных водорослей, построены из одинаковых клеток, а самые крупные растения состоят из миллиардов таких ячеек, каждая из которых выполняет свою функцию и поэтому отличается друг от друга. Сравнение клеток растений можно провести, наблюдая их самостоятельно. Сложно представить, сколько их находится в одном дереве, если только его лист содержит примерно 20 000 000 штук.

А теперь сложное научное определение: клетка – это система, а это значит, что она состоит из более мелких, но взаимосвязанных частей. Этими частями являются её детали, построенные из биополимеров – нуклеиновых кислот и белков, которые совместно поддерживают энергетические и метаболические процессы всего организма в целом.

Кто первым увидел клетку? Увеличительные приборы

Большинство клеток нельзя увидеть невооружённым глазом. Только после изобретения увеличительных приборов люди узнали, что всё живое сделано из них, а клетка появляется из другой (материнской) клетки.

  • Оптический (световой) микроскоп изобрели в 16 веке. По одной версии в 1591 году его придумали отец и сын Янсены. По другой – немого раньше в 1538 г. итальянский врач Франкастро впервые скомбинировал две линзы так, что получилось небольшое увеличение.
  • Галилео Галилей в 1609 г собрал прибор с вогнутой и выпуклой линзой.
  • Английский учёный Роберт Гук в 1665 году приспособил ранее изобретённый окуляр к микроскопу и получил 30-кратное увеличение, он описал строение некоторых растительных тканей, в частности пробки коры дуба. Эта ткань состояла из маленьких ячеек, разделённых перегородками. Это были мёртвые клетки, но Роберт Гук их увидел первым и дал им название «клетки». Но слово в современном его значении стали употреблять только 150 лет спустя.

Микроскоп Роберта Гука Источник 

А А. Левенгук в 1675 г обнаружил протисты, используя микроскоп с одной хорошо отшлифованной линзой, увеличивающей объект в 100 и 300 раз.

  • В 1838 г. немецкий ботаник Матиас Шлейден пришёл к выводу, что все растительные ткани имеют клеточное строение.

Разнообразие растительных клеток. Источник

Какие бывают увеличительные приборы?

О свойствах отполированного двояковыпуклого стекла знали ещё в Древней Греции. Поместив его в оправу, люди получили первый увеличительный прибор – лупу. Она даёт увеличение в 2-30 раз. Но большинство клеток можно увидеть только при большем разрешении. Они очень малы и при описании их величины применяют микрометры и нанометры.

Единицы измерения, используемые в микроскопии Источник 

Человеческий глаз имеет разрешение до 100 мкм. Чтобы рассмотреть более мелкие предметы, приходится применять увеличивающие приборы. Лучший световой микроскоп способен показать нам объекты размером до 0,2 мкм, т. е. 200 нм, увеличивая его в 500 раз. Сделать оптический микроскоп с большей разрешимостью технически невозможно. Увеличение школьного светового микроскопа не превышает 300 раз.

В 20 веке учёные придумали применять вместо видимого света (потока фотонов) – поток электронов. Согласно современным представлениям, фотон является частицей с волновыми свойствами, самая длинная волна у красного света, самая короткая – у фиолетового.

Электронный микроскоп разрешает увеличить предметы больше, чем оптический, в 400 раз, так как размер электрона значительно меньше размера фотона. Классический радиус электрона составляет примерно три миллионных нанометра, а наименьшая длина волны видимого света равна 380 нанометров.

Поток фотонов огибает мелкие частицы, размеры которых сравнимы с длиной световой волны, а электроны отражаются от них. Чтобы увидеть изображение, которое дает электронный микроскоп, его надо вывести на специальный экран. В современный электронный микроскоп можно увидеть частички размером в 0,5 нм.

[attention type=yellow]

Под ним рассматривают вирусы, мелкие части клетки. Существуют просвечивающие и сканирующие электронные микроскопы. Последний имеет больше преимуществ, им чаще пользуются микробиологи.

[/attention]

Сканирующий электронный микроскоп Источник

Как устроена клетка растений?

Размеры клетки растений колеблются от 10 до 100 мкм. Значит, их можно увидеть в световой микроскоп. Есть и гигантские клетки.

Например, хорошо видны невооружённым глазом волокна апельсина, а это всего одна клетка. Семена хлопчатника имеют волоски, состоящие из одной клетки, их длина равна 5 см.

У китайской крапивы волокна ещё длиннее – до 55 см. Но их ширина намного меньше, всего от 50 до 100 мкм.

По форме у многоклеточных организмов, в том числе и у растений, бывают паренхимные (примерно одинаковые при измерении во всех направлениях) и прозенхимные (вытянутые) клетки.

У всех клеток есть 2 компонента: плазмалемма (цитоплазматическая мембрана) и протопласт (живая часть). Клетки делятся на доядерные (прокариотические) и ядерные (эукариотические).

Мы говорим про клетку растений, она эукариотическая (с ядром). Протопласт ядерных клеток делят на цитоплазму и ядро.

Цитоплазму подразделяют на цитоплазматический матрекс, называемый гиалоплазмой (цитозолем) и органоиды (органеллы), как органы у человека, выполняющие каждый свою работу (функцию). Органеллы бывают немембранные, одномембранные и двумембранные.

Строение клетки растения Источник 

[attention type=red]

В живой клетке растений цитоплазма постоянно движется. Этот процесс называется током цитоплазмы (циклозом). Течение перемещает все органоиды клетки, капли и кристаллы гиалоплазмы.

[/attention]

В процессе жизни протопласт выделяет разнообразные нужные клетке растений вещества. Они либо сохраняются внутри – в гиалоплазме, в вакуоли, либо становятся частью клеточной стенки. Простейшие из этих веществ: липиды, углеводы и белки.

Среди углеводов известными являются крахмал, глюкоза и сахароза. Секретируемый протопластом воск – это липид, его растения вырабатывают для создания защитного слоя – кутикулы, препятствующего потере влаги в пустынях.

А у хищного непентиса воск служит веществом-ловушкой, в котором попавшие внутрь растения животные застревают, не имея возможности спастись.

Хищное растение непентис (лат. Nepenthes). Источник 

Вторичные метаболиты протопласта, или группа защитных веществ: танины, алкалоиды и др.

, выполняют разные задачи, главной из которых является защита от съедания растений животными, проникновения болезнетворных микробов.

Например, стрекательные клетки крапивы производят муравьиную кислоту, которая впрыскивается в кожу прикоснувшегося к растению человека или животного, вызывая у них жгучую боль.

Стрекательными называют клетки, которые при раздражении впрыскивают в тело жертвы какие либо вещества: парализующие или раздражающие. У гидры они содержат нечто походе на гарпун или жёсткую нить, у крапивы это просто «ампулы» с жидкостью, отламывающиеся при прикосновении.

Стрекательная клетка крапивы Источник 

Теперь рассмотрим особенности строения растительной клетки более подробно. Сходство клеток растений выражается в наличии этих частей.

  • Клеточная стенка – это прочная углеводная оболочка, расположенная снаружи, за пределами плазмолеммы, она непосредственно контактирует с окружающей средой и другими клетками. У растений она состоит в основном из клетчатки (целлюлозы), образуемой протопластом, проходящей через мембрану и откладывающейся снаружи. Клеточная стенка растений прочная, но растяжимая. Всё благодаря её строению. Пока она контактирует с живой частью клетки, она растёт. Она придаёт клетке форму и сопротивляется давлению растущей вакуоли, делает её прочной, участвует в проведении полезных и задерживании вредных веществ. Через поры (отверстия) в клеточной стенке проходят цитоплазматические тяжи (плазмодесмы) при помощи которых клетка сообщается с другими клетками.
  • Цитоплазматическая мембрана (плазмалемма) – тонкая (4-10 нм) эластичная плёнка, расположенная под клеточной стенкой, покрывающая внутреннюю часть клетки и контактирующая с цитоплазмой. Её толщину можно сравнить со скорлупой яйца по сравнению с белком и желтком в нём. Выполняет транспортную, барьерную и рецепторную функции. её работа – пропускать нужные вещества в клетку, задерживать вредные и лишние снаружи. Но она трудится сразу на нескольких работах – в ней строятся внеклеточные структуры и через неё проходит транспортные каналы из клетки.
  • Гиалоплазма (цитозоль) – это полужидкая (гелеобразная) часть протопласта, основная функция которой – обеспечение обмена веществ клетки. Она объединяет все её части и помогает им взаимодействовать. На 90-95% цитозоль состоит из воды. Остальная часть – несмешивающиеся между собой органические и минеральные включения.
  • Рибосомы – самые мелкие органеллы клетки, увидеть которые можно только под электронным микроскопом, в них происходит сборка белков. Они лежат на цитоплазматической сети (сложный органоид, который изучают в старших классах) или внутри гиалоплазмы.
  • Цитоскелет – система трубочек, проходящих сквозь всю клетку. Они поддерживают её форму и служат местом транспорта веществ.
  • Ядро и хромосомы. В них хранится наследственная информация. Ядро как мозг животного руководит всеми процессами в клетке растений и не только. Мало влияет оно только на митохондрии и пластиды. Ядра бывают круглой или овальной формы, их размер колеблется от 2 до 500 мкм. При правильном окрашивании клетки они видны под световым микроскопом. В молодых клетках ядро расположено в центре, в старых оно отталкивается вакуолью к плазмалемме.
  • Пластиды, но по большей мере их разновидность хлоропласты – органеллы, функцией которых является превращение тепловой солнечной энергии в энергию химических связей АТФ и производство органических веществ в процессе фотосинтеза. Пластиды имеют клетки растений, некоторых бактерий и протист. Они образуются из пропластид (крошечных бесцветных телец), появляющихся в делящихся клетках побегов и корней. Без солнечного света они так и остаются бесцветными и называются этиопластами. На свету пропластиды становятся хлоропластами – пластидами, в которых преобладает хлорофилл (зелёный пигмент). Есть и другие виды пластид – лейкопласты (бесцветные) и хромопласты (оранжевые, красные или жёлтые). Все эти типы пластид могут «превращаться» друг в друга при изменении концентрации красителя (пигмента). Это крупные органеллы, у высших растений они равны 4-10 мкм, поэтому в оптический микроскоп их легко можно увидеть. У высших растений хлоропласты по форме напоминают линзу, лейкопласты и хромопласты бывают разными. У водорослей они разнообразные по форме, очень большие и называются по-другому – хроматофорами.

Форма хроматофор водорослей. Источник 

  • Вакуолярная система – это цитоплазматическая сеть, вакуоли и аппарат Гольджи. Вместе они обеспечивают синтез, хранение и транспорт клеточных мембран и белков. Сейчас нам важно рассмотреть только одну часть этой системы – центральную вакуоль, остальные органеллы вы будете учить в старших классах. У растений вакуоль в клетке играет очень важную роль. Это одномембранный пузырёк, заполненный клеточным соком. В молодой клетке существует много мелких вакуолей. С возрастом они наполняются веществами и сливаются вместе, образуя крупный пузырёк. Функции вакуоли: участие в солевом и водном обмене клетки, запасание питательных веществ и обеспечение объёма клетки при помощи тургорного давления. Крупные вакуоли арбуза, яблока, томата легко можно рассмотреть под световым микроскопом.

Вакуоли в клетках яблока и картофеля. Источник 

  • Митохондрии – есть во всех ядерных (эукариотических) клетках. В них производится АТФ, но совсем другим путём, нежели в пластидах. Они мелкие, не более 1 мкм, эллиптические или округлые. Это полусамостоятельные органеллы клетки, ранее бывшие клетками бактерий, которые каким-то способом оказались внутри другой более крупной клетки и стали её частью. Но они по прежнему появляются только путём деления материнского органоида, а если организму при половом размножении не досталась ни одна митохондрия, то она и не появится в ней никак. В них есть своя ДНК, рибосомы и синтезируются свои белки.
  • Органоиды движения – образования, напоминающие волоски – реснички, жгутики, ундулиподии, служащие для передвижения клеток. При помощи жгутика двигается одноклеточная водоросль хламидомонада, мужские половые клетки мхов и папоротников. Ундулиподии – органоиды движения многих водорослей, чаще на одноклеточной стадии их жизненного цикла. У высших растений ими снабжены мужские половые клетки.

Отличие клеток растений от клеток других живых организмов Источник 

В школе для того, чтобы понять, как устроены клетки, чаще всего рассматривают под микроскопом плёнку луковицы. Окрасив эту тонкую ткань, ты сможешь увидеть в клетке в световой микроскоп лейкопласты, ядро, цитоплазму и оболочку. Изучи инструкцию и сделай лабораторную работу самостоятельно. Не забудь сначала прочитать правила обращения с микроскопом.

Как рассмотреть клетки лука под микроскопом. Источник 

Источник: https://100urokov.ru/predmety/urok-3-kletochnoe-stroenie-rastenij

Cтроение растительной клетки — рисунок с подписями

Пластиды схематический рисунок

Изучая строение растительной клетки, рисунок с подписями станет полезным визуальным конспектом для усвоения этой темы. Но сначала немного истории.

Историю открытия и изучения клетки связывают с именем английского изобретателя Роберта Гука. В 17 веке, на срезе растительной пробки, рассматриваемой под микроскопом, Р. Гук обнаружил ячейки, которые и были в дальнейшем названы клетками.

Основные сведения о клетке были представлены позже немецким ученым Т. Шванном в клеточной теории, сформулированной в 1838 году. Основные положения этого трактата гласят:

  • все живое на земле состоит из структурных единиц — клеток;
  • по строению и функциям все клетки имеют общие черты. Эти элементарные частицы способны к размножению, которое возможно благодаря делению материнской клетки;
  • в многоклеточных организмах клетки способны объединяться на основании общих функций и структурно-химической организации в ткани.
  • Клетка растения
  • Строение растительной клетки
  • Органоиды клетки и их функции — описательная таблица
  • Цитоплазматические образования — органеллы клетки

Клетка растения

Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:

  • наличие клеточной стенки (оболочки);
  • наличие пластид;
  • наличие вакуоли.

Строение растительной клетки

На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.

Ниже будет подробно рассказано о каждой из них.

Органоиды клетки и их функции — описательная таблица

В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.

ОрганоидОписаниеФункцияОсобенности
Клеточная стенкаПокрывает цитоплазматическую мембрану, состав – в основном целлюлоза.Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ.Характерна для растительных клеток (отсутствует в животной клетке).
ЦитоплазмаВнутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения.Объединение и взаимодействие всех структур (органоидов).Возможно изменение агрегатного состояния.
ЯдроСамый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой.Хранение и передача наследственной информации.Двумембранный органоид.
ЯдрышкоСферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре.В них синтезируются рРНК и субъединицы рибосом.Ядро содержит 1-2 ядрышка.
ВакуольРезервуар с аминокислотами и минеральными солями.Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора).Чем старше клетка, тем большее пространство в клетке занимает вакуоль.
Пластиды3 вида: хлоропласты, хромопласты и лейкопласты.Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических.Иногда могут переходить из одного вида пластид в другой.
Ядерная оболочкаСодержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой).Разделяет цитоплазму от внутреннего содержимого ядра.Двумембранный органоид.

Цитоплазматические образования — органеллы клетки

Поговорим подробнее о составляющих растительной клетки.

Ядро

Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.

Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.

Эндоплазматическая сеть (ЭПС)

Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны. Второй тип способен осуществлять детоксикацию вредных продуктов обмена.

Аппарат Гольджи

Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.

Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.

Лизосомы

Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение — участвовать в процессах расщепления внутри клетки.

В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.

Митохондрии

Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.

Внутренняя мембрана способна образовывать складки — кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.

Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.

Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.

Пластиды

По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:

  • отвечающие за зелёную окраску растений — хлоропласты;
  • ответственные за осенние цвета — оранжевый, красный, жёлтый, охра — хромопласты;
  • не влияющие на окрашивание, бесцветные лейкопласты.

Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.

В них осуществляются процессы фотосинтеза. Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.

Это важно: основной функцией хлоропластов является фотосинтез – синтез органических веществ из неорганических при участии световой.

За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).

Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).

Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.

Лейкопласты

Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Внутренняя система мембран развита слабее, чем у хлоропластов.

Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.

Рибосомы

Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).

Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.

Микротрубочки

Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.

Вакуоль — строение и функции

На рисунке обозначена голубым цветом. Состоит из мембраны (тонопласта) и внутренней среды (клеточного сока).

Занимает большую часть клетки, центральную её часть.

Запасает воду и питательные вещества, а также продукты распада.

Несмотря на единую структурную организацию в строении основных органоидов, в мире растений наблюдается огромное видовое разнообразие.

Любому школьнику, а тем более взрослому, нужно понимать и знать, какие обязательные части имеет растительная клетка и как выглядит её модель, какую роль они выполняют, и как называются органоиды, отвечающие за окраску частей растений.

Источник: https://1001student.ru/biologiya/kletka-rasteniya.html

Особенности строения растительных клеток – Биология

Пластиды схематический рисунок

Растения, как и все живые организмы, имеют клеточное строение. Они могут быть одноклеточными, колониальными и многоклеточными. Клетка одноклеточного растения представляет собой  целый организм и  выполняет все функции, необходимые для обеспечения жизнедеятельности.

Чаще всего оно имеет форму близкую к шаровидной или яйцевидной. Клетки многоклеточных растений очень разнообразны. Они отличаются друг от друга формой, строением, размерами. Это связано с тем, что в многоклеточном организме клетки выполняют различные функции.

Многообразие растительных клеток возникает в результате дифференциации однородных клеток зародыша. Размеры клеток большинства растений колеблются в переделах 10-1000 мкм. Форма клеток многоклеточных организмов может быть округлой, эллипсовидной, кубической, цилиндрической, звездчатой и т.д.

Все многообразие форм прастительных клеток можно свести к двум основным типам:

·         паренхимные клетки — клетки, имеющие форму изодиаметрического многогранника, то есть их размеры во всех трех измерениях приблизительно одинаковы;

·         прозенхимные клетки — сильно вытянутые клетки, длина которых превышает их ширину и толщину в 5 и более раз (например, волокна льна имеют длину 0,2-4 см, а толщина не превышает 100мкм.

Несмотря на разнообразие, клетки растений имеют общий план строения. Растительная клетка имеет все органоиды, свойственные другим эукариотическим организмам (животные, грибы): ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи и т.д. Вместе с тем, она отличается от них наличием:

·         прочной клеточной стенки;

·         пластид;

·         развитой системы постоянно существующих вакуолей.

Кроме того, в клетках большинства высших растений отсутствует клеточный центр с центриолями.

Общий план строения эукариотической клетки рассматривается в разделе “Общая биология” В этой главе мы остановимся только на отличительных особенностях строения растительной клетки.

 Клеточная стенка

Растительная клетка, как и животная, окружена цитоплазматической мембраной, поверх которой располагается, как правило, толстая клеточная стенка, отсутствующая у животных клеток.

[attention type=green]

Основным компонентом клеточной стенки является целлюлоза (клетчатка). Молекулы целлюлозы собраны в пучки — фибриллы, образующие каркас клеточной стенки.

[/attention]

Промежутки между фибриллами заполнены матриксом, в состав которого входят другие полисахариды — гемицеллюлозы, пектины и гликопротеины.

Помимо полисахаридов, в клеточной стенке можно обнаружить и неуглеводные компоненты — лигнин, воска, кутин и суберин.

Функции клеточной стенки:

·         придает клетке определенную форму и прочность;

·         защищает живое содержимое клетки;

·         играет определенную роль в поглощении, транспорте и выделении веществ;

·         служит местом накопления некоторых запасных веществ.

Плазмодесмы

Плазмодесмы — цитоплазматические тяжи, соединяющие содержимое соседних клеток. Они проходят через клеточную стенку.

Плазмодесмы представляют собой узкие каналы, выстланные плазматической мембраной. В нем располагается десмотрубочка — цилиндрическая трубочка меньшего диаметра, сообщающаяся с ЭПР обеих соседних клеток. Чаще всего плазмодесмы формируются во время клеточного деления.

Пластиды

Двумембранные органеллы, характерные для растительных клеток. Совокупность всех пластид клетки называется пластидом.

Образование пластид происходит из пропластид — мелких телец, находящихся в меристематических клетках корней и побегов. По форме пропластиды напоминают митохондрии, отличаясь лишь большими размерами.

Снаружи они покрыты двойной цитоплазматической мембраной. В пластидах различают более или менее развитую мембранную систему (часто это одиночные тилакоиды, расположенные без определенной ориентации; иногда — трубочки или пузырьки) и внутреннее содержимое, представленное гомогенным веществом — строму.

Различают три основных типа пластид:

·         лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений;

·         хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цвета;

·         хлоропласты — зеленые пластиды.

Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения.

Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету) обратный процесс происходит в темноте.

При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Хлоропласты

Основная функция хлоропластов — фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ.

Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Хлоропласты — двумембранные органоиды (рис. 2). Наружная мембрана гладкая, а внутренняя имеет складчатую структуру.

В результате образования выпячиваний внутренней мембраны, возникает система основных структурных элементов хлоропласта — тилакоидов. Различают:

·         тилакоиды гран, имеющие вид уплощенных мешочков, уложенных в стопки — граны;

·         тилакоиды стромы, имеющие вид уплощенных канальцев и связывающие граны между собой.

[attention type=yellow]

Молекулы хлорофилла входят в состав мембран тилакоидов гран, где они собраны в группы — квантосомы. Тилакоиды гран связаны друг с другом таким образом, что их полости оказываются непрерывными.

[/attention]

В каждом хлоропласте находится в среднем 40-60 гран, расположенных в шахматном порядке. Этим обеспечивается максимальная освещенность каждой граны. Каждая грана содержит ферменты, участвующие в синтезе АТФ.

Внутренняя среда хлоропласта — строма — содержит ДНК и рибосомы, благодаря чему хлоропласт способен к автономному делению, как и митохондрии.

На рибосомах происходит синтез белков мембран тилакоидов (в том числе и ферментов, осуществляющих световые реакции фотосинтеза). Белки стромы и липиды мембран имеют внепластидное происхождение.

Среди белков стромы особое значение имеют белки-ферменты, синтезирующие органические вещества с использованием энергии АТФ.

Лейкопласты

Бесцветные, обычно мелкие пластиды. Встречаются в клетках органов, скрытых от солнечного света — корнях, корневищах, клубнях, семенах. Форма разнообразна — шаровидная, эллипсовидная, гантелевидная, чашевидная и т.д.

Тилакоиды развиты слабо. Имеют ДНК, рибосомы, а также ферменты, осуществляющие синтез и гидролиз запасных веществ. Основная функция — синтез и накопление запасных продуктов (в первую очередь крахмала, реже — белков и липидов).

Хромопласты

Встречаются в клетках лепестков многих растений, зрелых плодов, реже — корнеплодов, а также в осенних листьях. Содержат пигменты, относящиеся к группе каротиноидов, придающие им красную, желтую и оранжевую окраску. Внутренняя мембранная система отсутствует или представлена одиночными тилакоидами.

Значение в обмене веществ до конца не выяснено. По-видимому, большинство из них представляют собой стареющие пластиды. Косвенное биологическое значение состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых-опылителей и других животных для распространения плодов.

Вакуоли

Вакуоли представляют собой полости, заполненные клеточным соком и отграниченные от цитоплазмы мембраной, которую называют тонопластом.

На долю вакуолей в растительной клетке приходится до 90% ее объема. Причем, вакуоли являются постоянными компонентами растительных клеток в отличие от животных, в которых могут возникать временные вакуоли.

Вакуоли развиваются из цистерн ЭПР. В их образовании принимает участие и аппарат Гольджи, в котором упаковываются продукты обмена веществ и затем в виде пузырьков транспортируются в вакуоль.

Молодые клетки, как правило, содержат большое количество мелких вакуолей, которые, постепенно сливаясь, образуют одну большую, занимающую практически всю полость клетки. При этом цитоплазма с органоидами и ядро оказываются оттесненными к цитоплазматической мембране, то есть занимают пристенное положение.

Клеточный сок, содержащийся в вакуолях, представляет собой слабоконцентрированный водный раствор органических и неорганических веществ, образующих истинные и коллоидные растворы.

[attention type=red]

В вакуолях происходит накопление как запасных веществ, так и конечных продуктов обмена веществ.

[/attention]

Кроме того, в вакуолях часто содержатся особые пигменты из группы антоцианов, придающие растительным клеткам голубую, фиолетовую, пурпурную, темно-красную и пунцовую окраску.

Функции вакуолей:

·         накапливают питательные вещества;

·         изолируют конечные продукты обмена веществ;

·         поддерживают тургорное давление;

·         регулируют водно-солевой обмен;

·         способствуют растяжению и росту клеток;

·         окрашивают определенные части растений, привлекая опылителей и распространителей плодов и семян;

·         могут выполнять функцию лизосом.

Источник: https://www.sites.google.com/site/biologia00004/osobennosti-stroenia-rastitelnyh-kletok

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: