Последовательность мономеров в полимере

Содержание
  1. Что такое полимеры и мономеры?
  2. Что такое мономеры?
  3. Что такое полимеры?
  4. Получение полимеров химическим путём
  5. Природные и синтетические полимеры
  6. Мономеры
  7. Получение мономеров
  8. Преимущества мономеров
  9. Применение мономеров
  10. Таблица. Перечень мономеров, полимеров и их названий
  11. Основные структурные понятия | Химия онлайн
  12. Мономер
  13. Полимер, макромолекула
  14. Структурное звено полимера (мономерное звено)
  15. Степень полимеризации
  16. Молекулярная масса макромолекулы и полимера
  17. Геометрическая форма макромолекул
  18. 4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки
  19. Реакции полимеризации
  20. Полимеры, получаемые реакцией полимеризации, и исходные мономеры
  21. Реакции поликонденсации
  22. Пластмассы
  23. Каучуки
  24. Волокна
  25. Классификация волокон по их происхождению
  26. Характеристические мономеры, типы и примеры / химия
  27. Мономеры связаны ковалентными связями
  28. Функциональность мономеров и структура Полимера
  29. Бифункциональность: линейный полимер
  30. Полифункциональные мономеры. Трехмерные полимеры
  31. С двойной связью между углеродом и углеродом
  32. Две функциональные группы в структуре
  33. Функциональные группы
  34. Союз равных мономеров
  35. Союз разных мономеров
  36. Типы мономеров
  37. Природные мономеры
  38. Синтетические мономеры
  39. Полярные и полярные мономеры
  40. Циклические или линейные мономеры
  41. примеров
  42. ссылки

Что такое полимеры и мономеры?

Последовательность мономеров в полимере

Одним из важнейших направлений в органической химии является изучение и создание полимерных материалов, из которых сегодня изготавливается множество изделий бытового и промышленного назначения.

Это сложная тема, но разобраться в ней хотя бы в общих чертах необходимо, чтобы лучше понимать свойства и особенности разных видов полимеров.

Что такое мономеры?

В органической химии мономерами принято называть атомы, группы атомов либо небольшие молекулы, которые способны образовывать устойчивые полимерные цепочки.

Слово образовано от двух греческих: «моно»один, единичный, и «мерос»часть.

Чаще всего в качестве мономеров выступают органические вещества – этилен, ацетилен, алкены и т.д.

[attention type=yellow]

В качестве примера натуральных мономеров можно вспомнить аминокислоты, которые, полимеризуясь, образуют сложные белковые молекулы.

[/attention]

Находящиеся в клеточном ядре нуклеотиды образуют чрезвычайно важные естественные полимеры – нуклеиновые кислоты РНК и ДНК.

Но подавляющее большинство полимеров, используемых современной промышленностью, получены всё же путём органического синтеза на химических предприятиях, из акриламида и акриловой кислоты, этилена и ацетилена, винила хлорида и др.

Что такое полимеры?

Слово «полимер» получено из греческих слов «поли»много и «мерос»часть. Это химическое вещество, преимущественно органическое, молекула которого состоит из большого количества одинаковых молекулярных отрезков-мономеров.

Полимеры часто называют высокомолекулярными соединениями (ВМС), так как их молекулярный вес чрезвычайно высок и достигает сотен тысяч и даже миллионов единиц. Полимеры образуются в результате химических реакций поликонденсации и полимеризации.

Существует три типа формирования полимерных молекул:

линейный, когда мономерные отрезки соединены друг с другом в виде длинной цепи двумя связями;

сетчатый, когда макромолекула образует сетчатую структуру, а каждый мономер связан с другими при помощи трёх или четырёх связей;

разветвлённый, сочетающий в одной молекуле двухвалентные (с двумя связями) и трёх-четырёхвалентные мономеры.

Линейные и разветвлённые полимеры могут образовывать эластичные плёнки и анизотропные волокна, тогда как сетчатые полимеры отличаются высокой прочностью, твёрдостью и достаточно высокой термоустойчивостью. Но сильный нагрев, до температуры плавления, разрушает сетчатую структуру, после чего она не восстанавливается.

Если же нагревать линейный или разветвлённый полимер, то он превращается в пластичную массу, а после застывания восстанавливает свои свойства, поэтому они пригодны для многоразового использования.

Получение полимеров химическим путём

Полимеры образуются из отдельных мономеров в ходе процессов поликонденсации либо полимеризации. Поликонденсация возможна для мономеров, состоящих из двух или нескольких атомных групп. В макромолекуле полимера, как правило, элементарное звено отличается по составу от исходного мономера.

В ходе реакции некоторые атомы теряются, и из них образуется, помимо полимера, другое вещество. Ярким примером служит поликонденсация капрона из аминокапроновой кислоты, протекающая с выделением молекул воды из «потерянных» атомов водорода и гидроксильной группы.

В процессе полимеризации единичные мономеры соединяются в молекулу полимера целиком, без потери атомов. При этом кратные связи в молекулах мономера преобразуются в одинарные, а валентные электроны вторых связей служат для установления связей между молекулами мономеров. Именно так из этилена образуется полиэтилен.

Природные и синтетические полимеры

Некоторые виды полимеров образуются естественным путём. Примерами натуральных полимеров могут служить таким распространённые вещества, как целлюлоза, крахмал, волокна шерсти, шёлка или хлопка, натуральный каучук, а также все виды белковых соединений.

Большинство видов полимеров получают искусственным путём в ходе полимерного синтеза из дешёвых и доступных видов органического сырья – каменного угля, природного газа, различных фракций нефти и т.д. Это разнообразные пластмассы, синтетические волокна, вспененные материалы, синтетический каучук и т.д.

Многие синтетические полимеры по прочности, химической стойкости, водонепроницаемости и ряду других важных свойств существенно превосходят натуральные материалы.

Кроме того, в производстве полимеры намного дешевле природных материалов, поэтому их широко используют во всех сферах промышленности и быта.

Источник: https://www.vseznaika.org/chemiks/chto-takoe-polimery-i-monomery/

Мономеры

Последовательность мономеров в полимере

Мономер представляет собой особое вещество, которое образуется после протекания определенной химической реакции. Также мономерами обозначает все повторяющиеся частицы, которые входят в состав полимерных молекул.

При этом получение мономеров достигается в процессе полимеризации. У данных веществ есть классификация. Согласно ней, все мономеры различаются между собой согласно своей функциональности. Существует бифункциональные мономеры, в составе которых присутствует две группы, способные вступать в дальнейшем химические реакции.

Соответственно трифункциональные мономеры имеют свои особенности и больше возможностей. Но, с другой стороны, многофункциональность в мономерах невозможна, ведь данные вещества неспособны полимеризации. Благодаря особенностям своего строения они фактически прерывают полимерную цепь.

Однако, с другой стороны, мономеры все же могут использоваться во всех разбавителях и модификации в различных реакционных смесях.

Здесь всё зависит от:

  • условий, при которых протекают подобные реакции,
  • пропорций веществ,
  • специально созданной среды, позволяющей ускорить получение нужного результата.

Существуют и другие вещества, составной частью которых являются мономеры. Но если смешать между собой два мономера, которые способны самостоятельно вступать в реакции полимеризации, чистых цепей в итоге не получится.

Получение мономеров

Удивительно, но некоторые вещества можно получить только в определённых лабораторных условиях.

Это обусловлено тем, что химики знают, как правильно ускорять некоторые процессы и какое количество вещества для этого потребуется.

Поэтому такие элементы, как органические мономеры, нуждаются в контроле над протеканием всей химической реакции, чтобы впоследствии образовались нужные компоненты.

[attention type=red]

Одним из самых распространенных методов, позволяющих получить мономеры, является реакция на перераспределения различных заместителей у атомов, присутствующих в кремнии. При этом данный метод представляет собой ценность ещё и потому, что позволяет осуществлять производство тех типов мономеров, получить которые практически невозможно, используя другие способы.

[/attention]

Ведь подобные реакции являются затратными с финансовой точки зрения. Во время подобных процедур израсходуются так же значительные объёмы электроэнергии.

Из-за особенностей, которые присущи определённым химическим веществам, строение мономера представляет собой сложную систему, каждый из элементов которой занимает в ней своё собственное и правильное место.

Чтобы создать нечто подобное в лабораторных условиях понадобятся химические вещества, позволяющие создать все условия для правильного протекания этого процесса.

Кроме того, существует и другой способ, благодаря которому можно получить мономеры. Суть второго процесса состоит в использовании пентапласта.

Почему при проведении нескольких последовательных химических реакций можно получить сырые мономеры. Завершающим этапом на пути к получению данного вещества является ректификация. Для протекания этого процесса необходимо создать определенную атмосферу из азота. Вся реакция происходит под вакуумом. Только так появляется возможность получить по консистенции необходимое вещество.

Существует также и другие лабораторные методы, позволяющие получать мономеры. Они в основном основаны на уже проведенных ранее исследованиях и зависят от определенных химических элементов, ускоряющих процессы проведения данных реакций.

Промышленность подобные методы не могут быть перенесены из-за объемов производства и больших затрат на приобретение всех необходимых для правильного протекания всех реакций химических веществ.

Преимущества мономеров

В самих мономерах существует несколько групп, позволяющих веществу находиться в определенном устойчивом состоянии. Поэтому не только полярные, но также неполярные группы способны оказывать значительное влияние на свойства защитного покрытия.

Все дело в том, что:

  • мономеры отличаются прочной структурой,
  • их зачастую используют для создания различных типов защитного покрытия,
  • химические вещества способны создавать новые элементы, если правильно провести соответствующие реакции.

В отличие от лабораторных методов, технически позволяют произвести синтез мономеров при меньших финансовых затратах.

Важно так же понимать тот факт, что при создании подобных химических веществ особую роль играет переработка всевозможных элементов, относящихся к классам взрывоопасных.

Поэтому при работе с подобными химическими веществами необходимо соблюдать все правила пожарной безопасности и четко следовать ранее установленным пропорциям составов, необходимых для последующего протекания реакций синтеза.

Применение мономеров

Как уже было сказано выше, мономеры применяют для создания защитных покрытий. Однако сфера, в которой они используются, достаточно широка. Таким образом, из мономеров зачастую изготавливают некоторые ароматизированные вещества. С промышленной точки зрения подобные элементы важны.

Из некоторых типов мономеров впоследствии можно «собрать» более сложные вещества. Например, основанные на нескольких элементах полимеры вполне могут стать важной составляющей при производстве всевозможного сырья из нефти и подобных ей химических элементов.

Интерес к мономерам в последние годы значительно возрос из-за возможности их использования в различных сферах человеческой жизнедеятельности.

[attention type=green]

Для России данное вещество могло бы стать отличным способом значительно улучшить положение экономики. Ведь, если при помощи мономеров производить всевозможные защитные покрытия для различных типов поверхностей, не понадобится осуществлять их закупку за рубежом. Этот факт значительно снизит уровень затрат на организацию и проведение всевозможных химических реакций.

[/attention]

Наша страна богата всевозможными запасами природных ископаемых и различных по своей структуре химических элементов. Однако необходимо организовать процесс добычи необходимых для промышленности веществ – правильно. Нельзя бездумно использовать все дары природы, не привнося в неё ничего взамен.

На данный момент в нашем государстве происходит реорганизация большинства сфер промышленности. Это позволит заменить старое оборудование на заводах более совершенным и, таким образом, выйти на совершенно новый в экономическом плане уровень развития.

Если рассматривать процесс получения мономеров, то он является больше химическим, нежели технологическим. Так как реакции происходят без вмешательства специалистов. Они просто создают для и протекания благоприятную среду и в результате получают нужный им мономер.

В зависимости от способа получения данного вещества, его структура будет различной. Однако, если для промышленных целей необходимо использовать конкретный по своей структуре мономер, процесс его получения будет выбран соответствующий.

Так как Россия может себе позволить проводить подобные химические реакции в пределах узкоспециализированных предприятий, у страны появляется уникальная возможность стать лидером среди других, развивающихся в промышленном плане стран мира. С другой стороны, отрасль требует к себе особого внимания и дополнительных финансовых затрат, а также инвестиций, на проведение определённых опытов выявляющих новые и наиболее приемлемые для промышленности способы получения мономеров.

Только после этого можно будет работать с уже проверенными специалистами способами, позволяющими получить нужный мономер в лабораториях или же при необходимости прямо на заводах.

Кроме современных, существуют так же и отечественные технологии, которые основаны на более простых способах, позволяющих создать в результате протекания различных химических реакций нужное по составу вещество.

Но, несмотря на то, что данный процесс представляет собой ряд определённых реакций от последовательности которых зависит, будет ли результат положительным, важно изначально использовать только качественное сырьё.

[attention type=yellow]

Многие страны сталкиваются на данный момент с дешёвыми поддёлками, не способными обеспечить полноценное протекание определённых типов реакций. Удивительно, но узнать, является ли данное вещество оригиналом практически невозможно без применения дорогостоящих индикаторов.

[/attention]

Поэтому Россия стремится вытеснить подобных несознательных производителей, чтобы занять их место на мировых рынках. Всё дело в том, что отсутствие инвестиций в данную область сказывается на недостаточном изучении данной темы. Необходимо создать в промышленности отдельное направление, которое занималось ба решением всех проблем, связанных с получением мономеров в лабораторных условиях.

Чтобы такие страны как Россия смогли обеспечить полноценное изучение данной темы, необходимо приобретать сырьё по достаточно доступной для производителей стоимости. Ведь если исходная цена будет высокой, нет гарантии в том, что при последующем производстве мономеров расходы на его получение окупятся сполна.

Важно так же учитывать, что процесс создания подобных химических веществ должен быть простым. То есть, чтобы разработать защитное покрытие, нужно лишь учесть все этапы проведения реакций, которые в результате приведут нас к получению необходимого по консистенции вещества.

При этом нужно использовать незначительное количество исходного сырья. То есть, пропорции веществ должны быть рассчитаны правильно, чтобы не происходил перерасход материалов, принимающих участие в последующем промышленном производстве мономеров.

Но самым главным условием положительного результата выступает качество уже готовой продукции. Если она отличается от дешёвых товаров своей прочностью и долговечностью подобный производитель будет высоко цениться.

Фактически разные группы в мономерах осуществляют своё влияние на формирование и последующие функциональных характеристики большинства защитных покрытий. Важность здесь представляет их соотношение между собой. От него напрямую зависит конечный результат большинства реакций, направленных на получение мономеров, а также их дальнейшее использование в промышленности.

Поэтому производителям следует, прежде всего, задуматься над тем, что исходный состав веществ, который необходим для получения мономеров, должен быть правильно рассчитан.

[attention type=red]

А если каждое вещество при этом будет состоять из качественных составных элементов, исчезнет необходимость в том, чтобы израсходовать химические вещества на производство некачественных товаров.

[/attention]

При проведении химических реакций необходимо так же соблюдать все меры безопасности!

Таблица. Перечень мономеров, полимеров и их названий

Заместитель ХМономерПолимер
Нэтен(этилен)полиэтен(полиэтилен)
СН3пропен(пропилен)полипропен(полипропилен)
С1хлорэтен(хлорвинил)полихлорвинил
СООНпропеновая (акриловая) кислотаполиакрилат
СNакрилонитрилполиакрилонитрил
ОСН3виниловый эфирполивиниловый эфир
О-СО-СН3винилацетатполивинилацетат
С6 Н5фенилэтен (стирол)полистирол

Источник: http://lkmprom.ru/analitika/vliyanie-sootnosheniya-polyarnykh-i-nepolyarnykh-g/

Основные структурные понятия | Химия онлайн

Последовательность мономеров в полимере

Для характеристики высокомолекулярных соединений необходимо рассмотреть следующие основные структурные  понятия.

Мономер

Мономеры — низкомолекулярные вещества, из которых образуются молекулы полимеров.

Молекулы полимеров являются макромолекулами.

Например, пропилен СН2=СH–CH3 является мономером полипропилена:

а такие соединения, как α-аминокислоты, служат мономерами при синтезе природных полимеров – белков (полипептидов):

Полимер, макромолекула

Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть).

Например, полиэтилен, получаемый при полимеризации этилена CH2=CH2:

… -CH2-CH2-CH2-CH2-CH2-CH2-CH2— …  или   (-CH2-CH2-)n

Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный).

Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц массы.

Структурное звено полимера (мономерное звено)

Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.

… -CH2-CHCl- CH2-CHCl-CH2-CHCl-CH2-CHCl-CH2-CHCl- …

поливинилхлорид

В формуле макромолекулы это звeно обычно выделяют скобками:

(-CH2-CHCl-)n

По строению структурного звeна макромолекулы можно сказать о том, какой мономер использован в синтезе данного полимера и, наоборот, зная формулу мономера, нетрудно представить строение структурного звeна.

Строение структурного звена соответствует строению исходного мономера, поэтому его называют также мономерным звеном.

Степень полимеризации

Степень полимеризации (n)

— число, которое показывает, сколько молекул мономеров соединяются в макромолекулу полимера.

В формуле макромолекулы степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено:

n >> 1

Для синтетических полимеров, как правило, n ≈ 102-104; а самые длинные из известных природных макромолекул – ДНК (полинуклеотидов) – имеют степень полимеризации n ≈ 109-1010.

Молекулярная масса макромолекулы и полимера

Молекулярная масса макромолекулы связана со степенью полимеризации соотношением:

М(макромолекулы) = M (звена) × n,

где n – степень полимеризации,
      M – относительная молекулярная масса
(подстрочный индекс r в обозначении относительной молекулярной массы Мr в химии полимеров обычно не используется).

Для полимера, состоящего из множества макромолекул, понятие молекулярная масса и степень полимеризации имеют несколько иной смысл. Дело в том, что когда в ходе реакции образуется полимер, то в каждую макромолекулу входит не строго постоянное число молекул мономера. Это зависит от того, в какой момент прекратится рост полимерной цепи.

Поэтому в одних макромолекулах мономерных звеньев больше, а в других — меньше. То есть, образуются макромолекулы с разной степенью полимеризации и, соответственно, с разной молекулярной массой (так называемые полимергомологи).

[attention type=green]

Следовательно, молекулярная масса и степень полимеризации полимера являются средними величинами:

[/attention]

Mср(полимера) = M (звена) × nср

Геометрическая форма макромолекул

Геометрическая форма макромолекулы — пространственная структура макромолекулы в целом.

В зависимости от строения углеродной цепи, различают линейные (неразветвленные), разветвленные и пространственные (сетчатые, сшитые) полимеры.

Линейная форма (структурные звенья соединены в длинные цепи последовательно одно за другим) — натуральный каучук, целлюлоза, амилоза (составная часть крахмала), поливиниловый спирт, полистирол, полиэтилен низкого давления, капрон, найлон и др. полимеры:

Разветвленная форма (макромолекулы разветвленных полимеров – это длинные цепи с короткими боковыми ответвлениями) — полиэтилен высокого давления, амилопектин (компонент крахмала):

Пространственная форма (сетчатая, сшитая), при которой длинные линейные молекулы соединены между собой поперечными химическими связями – шерсть, вулканизованный каучук (резина), фенолформальдегидные смолы:

В сетчатых полимерах различные углеродные цепи «сшиты» между собой, и вещество представляет собой одну гигантскую молекулу.

Геометрическая форма макромолекул в значительной степени влияет на свойства полимеров.

Высокомолекулярные соединения (ВМС)

Источник: https://himija-online.ru/organicheskaya-ximiya/vysokomolekulyarnye-soedineniya/osnovnye-strukturnye-ponyatiya.html

4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки

Последовательность мономеров в полимере

Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000.

Практически все высокомолекулярные вещества являются полимерами.

Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями.

Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации.

Реакции полимеризации

Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).

Количество молекул мономера (n), объединяющихся в одну молекулу полимера, называют степенью полимеризации.

https://www.youtube.com/watch?v=XGC-1Yz1jX4

В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией, а если различны — сополимеризацией.

Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:

Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:

Полимеры, получаемые реакцией полимеризации, и исходные мономеры

этилен, этенполиэтилен
пропилен, пропенполипропилен
стирол, винилбензолполистирол, поливинилбензол
винилхлорид, хлористый винил, хлорэтилен, хлорэтенполивинилхлорид (ПВХ)
тетрафторэтилен (перфторэтилен)тефлон, политетрафторэтилен
изопрен (2-метилбутадиен-1,3)изопреновый каучук (натуральный)
бутадиен-1,3 (дивинил)бутадиеновый каучук, полибутадиен-1,3
хлоропрен(2-хлорбутадиен-1,3)хлоропреновый каучук
ибутадиен-1,3 (дивинил)истирол (винилбензол)бутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).

В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации.

К реакциям гомополиконденсации относятся:

* образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:

* реакция образования капрона из ε-аминокапроновой кислоты:

К реакциям сополиконденсации относятся:

* реакция образования фенолформальдегидной смолы:

* реакция образования лавсана (полиэфирного волокна):

Пластмассы

Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.

Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.

Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты) и реактопласты.

Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.

Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.

Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.

Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.

Каучуки

Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:

Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.

Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.

[attention type=yellow]

Так например, особо зарекомендовавшими себя мономерами для получения каучуков являются:

[/attention]

1) бутадиен:

2) изопрен:

3) хлоропрен:

В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:

Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:

Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых  промышленность и научно-технический прогресс отсутствовали как таковые.

Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука.

По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.

Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.

Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков.

Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур.

На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.

[attention type=red]

Технические характеристики каучука могут быть существенно улучшены его вулканизацией.

[/attention]

Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:

Волокна

Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.

Классификация волокон по их происхождению

Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).

Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/polimery

Характеристические мономеры, типы и примеры / химия

Последовательность мономеров в полимере

мономеры это небольшие или простые молекулы, которые составляют основную или существенную структурную единицу более крупных или более сложных молекул, называемых полимерами. Мономер это слово греческого происхождения, что означает обезьяна, один и простой, часть.

Когда один мономер присоединяется к другому, образуется димер. Когда это в свою очередь сливается с другим мономером, оно образует тример и так далее, пока не образует короткие цепи, называемые олигомерами, или более длинные цепи, которые являются так называемыми полимерами..

Мономеры связаны или полимеризуются путем образования химических связей путем совместного использования пар электронов; то есть они связаны ковалентными связями.

На изображении выше кубы представляют собой мономеры, которые связаны двумя гранями (двумя звеньями), образуя падающую башню.

Это связывание мономеров известно как полимеризация. Мономеры одного или разных типов могут быть соединены, и количество ковалентных связей, которые могут быть установлены с другой молекулой, будет определять структуру полимера, который они образуют (линейные, наклонные или трехмерные структуры).

Существует большое разнообразие мономеров, среди которых есть мономеры природного происхождения. Они принадлежат и конструируют органические молекулы, называемые биомолекулами, присутствующими в структуре живых существ..

Например, аминокислоты, которые составляют белки; моносахаридные звенья углеводов; и мононуклеотиды, которые образуют нуклеиновые кислоты. Существуют также синтетические мономеры, которые позволяют разрабатывать бесчисленное множество инертных полимерных продуктов, таких как краски для пластмасс..

Можно упомянуть два из тысяч примеров, которые можно привести, например, тетрафторэтилен, который образует полимер, известный как тефлон, или мономеры фенол и формальдегид, которые образуют полимер, называемый бакелит..

индекс

  • 1 Характеристика мономеров
    • 1.1 Мономеры связаны ковалентными связями
    • 1.2 Функциональность мономеров и структура полимера
    • 1.3 Бифункциональность: линейный полимер
    • 1.4 Полифункциональные мономеры. Трехмерные полимеры.
  • 2 Скелет или центральная структура
    • 2.1 С двойной связью между углеродом и углеродом
    • 2.2 Две функциональные группы в структуре
  • 3 Функциональные группы
  • 4 объединения одинаковых или разных мономеров
    • 4.1 Союз равных мономеров
    • 4.2 Союз разных мономеров
  • 5 типов мономеров
    • 5.1 Природные мономеры
    • 5.2 Синтетические мономеры
    • 5.3 Полярные и полярные мономеры
    • 5.4 Циклические или линейные мономеры
  • 6 примеров
  • 7 ссылок

Мономеры связаны ковалентными связями

Атомы, которые участвуют в образовании мономера, удерживаются вместе сильными и стабильными связями, такими как ковалентная связь. Кроме того, мономеры полимеризуются или связываются с другими мономерными молекулами через эти связи, придавая прочность и стабильность полимерам..

Эти ковалентные связи между мономерами, могут образовываться в результате химических реакций, которые зависят от атомов, составляющих мономер, наличия двойных связей и других особенностей, которые имеют структуру мономера..

Процесс полимеризации может быть одной из трех следующих реакций: конденсацией, добавлением или свободными радикалами. У каждого из них свои механизмы и способы роста.

Функциональность мономеров и структура Полимера

Мономер может быть связан по меньшей мере с двумя другими молекулами мономера. Это свойство или характеристика – это то, что известно как функциональность мономеров, и это то, что позволяет им быть структурными единицами макромолекул..

Мономеры могут быть бифункциональными или полифункциональными, в зависимости от активных или реакционноспособных центров мономера; то есть атомы молекулы, которые могут участвовать в образовании ковалентных связей с атомами других молекул или мономеров.

Эта характеристика также важна, так как она тесно связана со структурой полимеров, которые составляют, как подробно описано ниже.

Бифункциональность: линейный полимер

Мономеры являются бифункциональными, когда они имеют только два сайта связывания с другими мономерами; то есть мономер может образовывать только две ковалентные связи с другими мономерами и образует только линейные полимеры.

Среди линейных полимеров в качестве примера можно упомянуть этиленгликоль и аминокислоты..

Полифункциональные мономеры. Трехмерные полимеры

Есть мономеры, которые могут быть связаны с более чем двумя мономерами и являются структурными единицами большей функциональности.

Они называются полифункциональными и представляют собой те, которые продуцируют разветвленные, сетчатые или трехмерные полимерные макромолекулы; например, полиэтилен.

С двойной связью между углеродом и углеродом

Есть мономеры, которые представляют в своей структуре центральный скелет, образованный по крайней мере двумя атомами углерода, соединенными двойной связью (C = C). 

В свою очередь, эта цепь или центральная структура имеет присоединенные с боков атомы, которые могут меняться, образуя другой мономер. (R2C = CR2).

[attention type=green]

Если какая-либо из цепей R модифицируется или заменяется, получается другой мономер. Аналогичным образом, когда эти новые мономеры собираются вместе, они образуют другой полимер.

[/attention]

В качестве примера этой группы мономеров можно упомянуть пропилен (H2C = CH3Н), тетрафторэтилен (F2C = CF2) и винилхлорид (H2C = CClH).

Две функциональные группы в структуре

Хотя есть мономеры, которые имеют одну функциональную группу, существует большая группа мономеров, которые имеют две функциональные группы в своей структуре.

Аминокислоты являются хорошим примером этого. Они имеют амино-функциональную группу (-NH2) и функциональная группа карбоновой кислоты (-СООН), присоединенная к центральному атому углерода.

Эта характеристика того, чтобы быть дифункциональным мономером, также дает способность образовывать длинные цепи полимеров в присутствии двойных связей..

Функциональные группы

В общем, свойства полимеров определяются атомами, которые образуют боковые цепи мономеров. Эти цепи составляют функциональные группы органических соединений.

Существуют семейства органических соединений, характеристики которых определяются функциональными группами или боковыми цепями. Примером является карбоновая кислота, функциональная группа R-COOH, аминогруппа R-NH2, спирт R-OH, среди многих других участвующих в реакциях полимеризации.

Союз равных мономеров

Мономеры могут образовывать различные виды полимеров. Вы можете объединять те же мономеры или того же типа и генерировать так называемые гомополимеры.

В качестве примера можно упомянуть стирол, образующий мономер полистирола. Крахмал и целлюлоза также являются примерами гомополимеров, образованных длинными разветвленными цепями мономера глюкозы.

Союз разных мономеров

Объединение разных мономеров образует сополимеры. Единицы повторяются в разных числах, порядке или последовательности вдоль структуры полимерных цепей (A-B-B-B-A-A-B-A-A- …).

В качестве примера сополимеров можно упомянуть нейлон, полимер, образованный повторяющимися звеньями двух разных мономеров. Это дикарбоновая кислота и молекула диамина, которые соединяются посредством конденсации в эквимолярных пропорциях (равных).

Различные мономеры также могут быть добавлены в неравных пропорциях, таких как образование специализированного полиэтилена, основной структурой которого является 1-октеновый мономер плюс этиленовый мономер.

Типы мономеров

Существует множество характеристик, позволяющих установить несколько типов мономеров, среди которых выделяются их происхождение, функциональность, структура, тип полимера, который они образуют, способ их полимеризации и их ковалентные связи..

Природные мономеры

-Существуют мономеры природного происхождения, такие как изопрен, который получают из сока или латекса растения, и это также мономерная структура натурального каучука.

-Некоторые аминокислоты, вырабатываемые насекомыми, образуют фиброин или белок шелка. Кроме того, есть аминокислоты, которые образуют полимерный кератин, который является белком шерсти, вырабатываемым животными, такими как овцы..

-Среди природных мономеров также имеются основные структурные единицы биомолекул. Например, моносахаридная глюкоза связывается с другими молекулами глюкозы с образованием различных типов углеводов, таких как крахмал, гликоген, целлюлоза и другие..

-Аминокислоты, с другой стороны, могут образовывать широкий спектр полимеров, известных как белки. Это потому, что существует двадцать типов аминокислот, которые могут быть связаны в любом произвольном порядке; и, следовательно, в конечном итоге образует тот или иной белок со своими собственными структурными характеристиками.

-Мононуклеотиды, которые образуют макромолекулы, называемые нуклеиновыми кислотами ДНК и РНК соответственно, также являются очень важными мономерами в этой категории..

Синтетические мономеры

-Среди искусственных или синтетических мономеров (которых много) можно упомянуть некоторые, из которых изготавливаются различные разновидности пластмасс; такой как винилхлорид, который образует поливинилхлорид или ПВХ; и этиленовый газ (Н2C = CH2) и его полиэтиленовый полимер.

Общеизвестно, что из этих материалов можно строить различные контейнеры, бутылки, предметы домашнего обихода, игрушки, строительные материалы и многое другое..

-Тетрафторэтиленовый мономер (F2C = CF2), образующий полимер, известный и коммерчески известный как тефлон.

-Молекула капролактама, полученная из толуола, необходима для синтеза нейлона, среди многих других.

-Существует несколько групп акриловых мономеров, которые классифицируются в зависимости от состава и функции. Среди них акриламид и метакриламид, акрилат, акрил с фтором, среди прочих.

Полярные и полярные мономеры

Эта классификация проводится в соответствии с разницей в электроотрицательности атомов, составляющих мономер. Когда есть заметная разница, полярные мономеры образуются; например, полярные аминокислоты, такие как треонин и аспарагин.

Когда разница электроотрицательности равна нулю, мономеры являются неполярными. Существуют неполярные аминокислоты, такие как триптофан, аланин, валин и др .; а также неполярные мономеры, такие как винилацетат.

Циклические или линейные мономеры

В соответствии с формой или организацией атомов в структуре мономеров их можно классифицировать как циклические мономеры, такие как пролин, этиленоксид; линейный или алифатический, такой как аминокислота валин, этиленгликоль среди многих других.

примеров

В дополнение к уже упомянутым, доступны следующие дополнительные примеры мономеров:

-формальдегид

-фурфурол

-Cardanol

-галактоза

-стирол

-Поливиниловый спирт

-изопрен

-Жирные кислоты

-эпоксиды

-И хотя они не были упомянуты, существуют мономеры, структура которых не газированная, а сера, фосфор или атомы кремния..

ссылки

  1. Кэри Ф. (2006). Органическая химия (6-е изд.). Мексика: Mc Graw Hill.
  2. Редакция энциклопедии Британика. (29 апреля 2015 г.) Мономер: химическое соединение. Взято из: britannica.com
  3. Мэтьюз, Холде и Ахерн. (2002). Биохимия (3-е изд.). Мадрид: Пирсон
  4. Полимеры и мономеры. Получено с: materialsworldmodules.org
  5. Wikipedia. (2018). Мономер. Взято из: en.wikipedia.org

Источник: https://ru.thpanorama.com/articles/qumica/monmeros-caractersticas-tipos-y-ejemplos.html

Лечимся дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: